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Since the outbreak of the COVID-19 pan-
demic in early 2020, epidemiologists and
economists have raced to develop models of
the disease usable for forecasting the pro-
gression of the pandemic, for evaluating the
effectiveness of various interventions aimed
at mitigating the spread of the disease,
and for understanding the interaction of
the pandemic with the economy.The models
developed by economists often differ from
those developed by epidemiologists in that
economists include equations intended to
capture the impact of endogenous changes
in human behavior undertaken in response
to the pandemic on the progression of the
pandemic itself.1 We refer to such models
as behavioral SIR, or BSIR, models.

We show that a simple BSIR model can
match an important feature of the data: the
growth rates of daily deaths began at high
and highly dispersed levels early on in the
pandemic and then fell toward zero fairly
rapidly. However, despite this remarkable
match between model and data on growth
rates of daily deaths, our simple model can-
not match many aspects of the evolution of
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the pandemic in many countries. Large un-
explained factors or wedges are required to
account for regime shifts in the evolution of
daily deaths, disease transmission, and hu-
man behavior that occurred in later days of
the pandemic. Future research should aim
at accounting for these wedges so as to de-
velop new models that are more useful for
analysis of this and future pandemics.

I. A Behavioral SIR Model

Our behavioral SIR model, which is com-
monly used in the literature, is built on the
standard SIR epidemiological model that is
used to interpret the data on deaths from
COVID-19 for a given region.2 At each mo-
ment of time, the population N is divided
into four categories (states) that sum to the
total population: susceptible S, infected I,
resistant R, and dead D. The transmis-
sion rate β(t) is the rate at which infected
agents spread the virus to others that they
encounter at date t. We use R(t) to denote
the effective reproduction number of the dis-
ease at date t, the ratio of the rate at which
infected agents infect susceptible agents to
the recovery rate γ of infected agents. The
effective reproduction number can fall ei-
ther due to changes in the normalized trans-
mission rate, β(t)/γ, or changes in S/N .

By inverting the standard SIR model to
interpret data on deaths, one can derive
a simple linear relationship between the
growth rate of daily deaths and the effec-

2Details of this SIR model, as well as the BSIR

model, are presented in Atkeson, Kopecky and Zha
(2020) and Droste and Stock (2021).
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tive reproduction number

(1) R(t) = 1 +
1

γ

d2D(t)

dt2

dD(t)

dt

,

Our behavioral SIR model assumes that
the transmission rate β(t) is a function of
human activity Y (t)

(2) β(t) = β̄Y (t)α exp(ψβ(t)).

The parameter β̄ in equation (2) is a fixed
coefficient that captures features of a re-
gion’s population and environment deter-
mined prior to the pandemic that might
impact transmission. Factors considered in
the literature include population density,
modes of transportation, household and de-
mographic structure, cultural norms (bow-
ing, shaking hands or kissing), and temper-
ature and humidity. The parameter α cap-
tures the elasticity of transmission with re-
spect to activity.

The parameter ψβ(t) represents a po-
tentially time-varying wedge shifting the
region-specific relationship between activity
and transmission. This wedge may repre-
sent the impact of policies such as mask-
wearing, ventilation, physical distancing,
redesign of workspaces, or other measures
implemented after the start of the pandemic
that reduce transmission given a fixed level
of activity, and/or natural variation in the
transmission of the virus over time such as
variation driven by seasonality or mutation
of the virus.

The behavioral component of the model
assumes that individuals’ decisions to en-
gage in activity in a given region at time
t, Y (t), are a declining function of the

time derivative of cumulative deaths, Ḋ(t),
which is measured by the current level of
daily deaths. We specify this function de-

scribing behavior as

(3) Y (t) = exp
(
−κḊ(t) + ψy(t)

)
,

where κ > 0 represents the semi-elasticity
of activity Y (t) with respect to daily
deaths. The variable ψy(t) represents a
time-varying shifter to the region-specific
relationship between deaths and activity
that may be induced by lockdowns or
changes in behavior in response to the dis-
ease.

By substituting equation (3) into equa-
tion (2), we obtain a reduced-form rela-
tionship between the current level of daily
deaths and the transmission rate, given by

(4) β(t) = β̄ exp(−ακḊ(t) + ψ(t)),

where ψ(t) ≡ αψy(t) +ψβ(t) is the compos-
ite wedge.

II. Estimation
In Atkeson, Kopecky and Zha (2020), we

discuss how to recover consistent estimates
of the growth rate of daily deaths, the level
of daily deaths, and the level of cumulative
deaths from noisy reported data on daily
deaths.3 With the estimated death growth
and level, one can study the epidemiological
dynamics implied by our BSIR model. For
this exercise we also need to set values of
several model parameters. Specifically, we
set ν = 0.005, a level used by the CDC for
those aged 50-69.4 The level of the fatality
rate, if held constant, does not impact our
estimates of the evolution of the effective
reproduction number in equation (1).

The rest of the parameters are set or es-
timated as follows. We set γ = 0.2. We set

3Atkeson, Kopecky and Zha (2020) study 103 regions
(34 states and 69 countries) with the estimation period

starting at the location-specific date when cumulative

deaths reached 25 and ending on November 12, 2020.
4See Table 1 at https://www.cdc.gov/coronavirus/

2019-ncov/hcp/planning-scenarios.html.

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html


VOL. VOL NO. ISSUE BEHAVIOR AND COVID-19 3

α = 2 for all locations to capture the idea
that the number of interactions between in-
dividuals goes up with the square of the
activity level of all individuals. We allow
the semi-elasticity κ to vary by location, de-
pending both on individuals’ opportunities
to reduce activity by working from home
and on their beliefs about personal trade-
offs involved in exposing themselves to virus
transmission. We normalize ψβ(0) = 0 and
the level of activity at the beginning of the
pandemic to Y (0) = 1. Given these nor-
malizations, the region-specific parameter
β̄ determines the transmission rate of the
virus in a given region at the beginning of
the pandemic, with the basic reproduction
number of the virus in this region given by
R0 = β̄/γ.

To solve the BSIR model, we set the ini-
tial fractions of susceptible, infected, recov-
ered, and dead at date t0 > 0 to their
values based on estimated daily deaths in
the data and the SIR model as described
in Section I. For each value of κ, β̄ is set
such that the transmission rate at date t0
in the BSIR model corresponds to the rate
implied by the SIR model and the death
data. This is achieved by setting β̄ =
βdata(t0) exp(ακḊdata(t)). After setting the
initial phase, for each location, we choose
κ to minimize the distance between daily
deaths in the data as given by our Bayesian
estimation procedure and daily deaths gen-
erated by the BSIR model with no wedges

such that
∑T

t=t0

[
Ḋdata(t)− Ḋ(t)

]2
is mini-

mized, where T indicates the terminal date.

III. Key Findings and Challenges

Our estimation yields important findings
about the COVID-19 pandemic that pose
challenges to future empirical work.
Finding I One key finding, documented

in Atkeson, Kopecky and Zha (2020), is
that the growth rate of daily deaths from

Figure 1. : Location and sampling uncer-
tainty.
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Figure 2. : Phase diagram for the dynamics
implied by the standard BSIR model.

COVID-19 fell rapidly almost everywhere
within the first 30 days after each region
reached 25 cumulative deaths. The solid
black line in Figure 1 shows that the me-
dian estimated growth rate of daily deaths
fell rapidly from an initial level of about
12 percent to zero within the first 30 days
of the estimation period. During this ini-
tial phase, there was a wide dispersion of
growth rates of daily deaths observed in
most of 103 locations; then there was a
regime shift and the dispersion remained
in a relatively narrow range around zero
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into mid November of 2020.5 This fact was
true even with substantial second and third
waves of daily deaths observed in many lo-
cations in the fall and winter of 2020.

According to equation (1), the effec-
tive reproduction numbers, as well as our
model-implied disease transmission rates,
have a similar pattern to Figure 1. That
is, they fell sharply in the early phase of
the pandemic from widely dispersed initial
levels and have since remained close to 1.6

A challenge for empirical work is how to ac-
count for this stark switch in regime from
the early period to the remaining period of
the pandemic.

Finding II The key dynamics of the
BSIR model can be summarized by the
phase diagram presented in Figure 2 with
S(t) on the x-axis and I(t) on the y-axis.
The black curve is the locus of points (S, I)

such that İ = 0. When (S, I) lies above

the black curve, İ < 0 and Ṡ < 0. When
(S, I) lies below the black curve, İ > 0 and

Ṡ < 0. The red curve in Figure 2 shows the
model-implied path of (S(t), I(t)). The pair
(S(t), I(t)) starts in the lower left corner of
the figure with S(0) very close to one and
I(0) positive but very close to zero. I(t)
rises rapidly initially and crosses over the
black locus of points such that İ = 0 and
then falls slowly, remaining above that lo-
cus until S(t) falls below S̄ where the locus

of points such that İ = 0 intersects the x-
axis and I(t) asymptotes to zero.

These dynamics imply two results: (a)

5The dashed lines in Figure 1 represent the 68% and
95% posterior probability intervals, which include both
location uncertainty and sampling uncertainty. Most of

the cross-sectional dispersion in growth rates in the fig-

ure, however, is driven by location uncertainty as sam-
pling uncertainty within a location is very small.

6This result is robust to various extensions of the

standard SIR model and consistent with the findings by
the IHME at the University of Washington.

the path of I(t) and hence the path of daily

deaths Ḋ(t) are both single-peaked; (b) af-
ter the peak of infections and daily deaths,
these outcomes cannot fall rapidly to a low
level without a substantial decline of S(t).
Thus, with no wedges, the model cannot ac-
count for multiple waves of infections and
daily deaths or the patterns of daily deaths
seen in many of the regions that were ini-
tially hard hit followed by a steep decline in
daily deaths to very low levels (Finding I).

Finding III The distribution of the
growth rates of daily deaths for all the re-
gions we study, generated by our estimated
BSIR model without wedges and reported
in the top panel of Figure 3, is qualitatively
similar to the data (Figure 1) in that the
growth rates of daily deaths fall toward zero
(the effective reproduction numbers fell to-
ward one) over the course of 30 days or
less—a regime shift. But the dispersion in
the growth rates of daily deaths predicted
by the BSIR model after the initial period
is substantially smaller than the dispersion
in the growth rates of these deaths observed
in the data. Unlike the data, in the BSIR
model without wedges, there are no realiza-
tions of growth rates substantially above or
below zero. As a result, both the magni-
tude and the dispersion of the wedges grow
larger over time (bottom panel of Figure 3).

The main reason for growing wedges
in both magnitude and dispersion is that
the relationship between the level of daily
deaths and the logarithm of the trans-
mission rate in the standard BSIR model
(equation (4)) exists only for the initial pe-
riod of the pandemic. After the initial pe-
riod, however, there is little apparent rela-
tionship. California (Figure 4), for exam-
ple, illustrates a one-to-one relationship be-
tween β(t) and daily deaths in the initial
period (the circled blue line) but no one-
to-one relationship after this initial period
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Figure 3. : Top panel: outcomes from the
BSIR model without wedges. Bottom panel:
wedges.
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Figure 4. : Relationship between the model-
implied lnβ(t) and the data on daily deaths

Ḋ(t) for California.

(the starred red line).7 This pattern, which
is suggestive of a regime shift in behavior
over time in response to the deadly pan-
demic, is common across all the countries

7Measuring Y (t) with Google mobility data, we find

a remarkably similar pattern: the one-to-one relation-
ship between β(t) and Y (t) (equation (2)) or between

Y (t) and Ḋ(t) (equation (3)) breaks down after the ini-
tial phase of the pandemic.

and U.S. states we examine. Accounting
for such a regime shift in behavior in an eco-
nomic model is a necessary but challenging
task.

IV. Going Forward

Qualitatively, the push by economists to
introduce theories of behavior into epidemi-
ological models of COVID-19 has been a
big empirical success. Even a simple BSIR
model matches the main features of the dy-
namics of the growth rate of deaths ob-
served in many locations around the world.

As our findings demonstrate, however,
much of the dynamics of the growth and
level of deaths is left unexplained by the
standard BSIR model. Such a model must
be augmented with very large wedges to
the transmission rate, while holding disease
prevalence constant, to match the data on
deaths. The next immediate task is to iden-
tify and estimate possible variations of be-
havioral parameters such as α, ν, γ, and κ
across regions and over time, and to study
whether these variations can account for
part of the widening wedges we find. A
more challenging task for future research
is to assess how much of the regional and
time variations in behavioral parameters is
due to nonpharmaceutical policies versus
changes in voluntary behavior (e.g., wear-
ing masks and practicing social distancing)
as well as versus changes in the disease it-
self.
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