Measuring the Welfare Gain from Personal Computers

Jeremy Greenwood

University of Pennsylvania

Karen A. Kopecky University of Western Ontario

CRIW Worskhop NBER Summer Institute

Personal Computers (PCs)

Facts:

- PCs enter the market in 1977.
- First successfully mass produced PC is Apple II.
- Rapid technological progress drives
 - 25 percent per year decline in quality-adjusted price
 - and synonymous rise in demand.

Personal Computers (PCs)

Price and Quantity Indices for Computers: 1977 to 2004

Source: U.S. National Income and Product Accounts, Tables 2.4.4 and 2.4.5 Kopecky – 2008 • Since 1977 computers' share of total expenditure has been rising...

Personal Computers (PCs)

Computers' Share of Personal Consumption Expenditure: 1977 to 2004

Source: U.S. National Income and Product Accounts, Tables 2.4.4 and 2.4.5 Kopecky – 2008

Question:

• What is the welfare gain to consumers in 2004 from the invention of the PC and the fall in its quality-adjusted price since 1977?

Findings:

• Welfare gain is approximately 4% of total consumption expenditure in 2004.

Approach:

- Calibrate/estimate a simple model of PC demand using the aggregate NIPA data.
- Calculate model's prediction of welfare gain.

Issue:

- Need to know what utility is in the absence of the good.
- However for a standard isoelastic utility function:

$$U(x) = \frac{x^{1-\rho}}{1-\rho},$$

1. $\lim_{x\to 0} U'(x) = \infty$

 \Rightarrow demand for x always positive regardless of price.

2. $\lim_{x\to 0} U(x) = -\infty$ when $1/\rho \leq 1$

 \Rightarrow welfare gain from new good is infinite.

Resolution:

- Modify preferences such that utility and marginal utility of zero consumption are always finite then
 - 1. when price is high enough demand is zero,
 - 2. non-trivial welfare gain regardless of elasticity of substitution.

Related Literature:

- Hausman (1996), Petrin (2002), Goolsbee and Petrin (2004),
- Hausman (1999): cell phones,
- Goolsbee and Klenow (2006): internet.

Our Contribution:

• Simple method for estimating the welfare gain from an innovative new good using aggregate data.

Model

Consumer solves

$$W(y,p) = \max_{c,n} [\theta U(c) + (1-\theta)V(n)]$$

subject to

$$c + pn = y,$$

and

$$c,n \geq 0,$$

where

y = income,

- p = relative price of computers,
- c =general consumption,
- n =standardized units of computer consumption.

Kopecky - 2008

• Utility function for consumption of general good is standard:

$$U(c) = \frac{c^{1-\rho}}{1-\rho}, \quad \rho \ge 0$$

so has standard properties:

 $U_1(c) > 0, \quad U_{11}(c) < 0, \quad \lim_{c \to \infty} U_1(c) = 0, \quad \lim_{c \to 0} U_1(c) = \infty$

• Utility function for personal computers is

$$V(n) = \frac{(n+\nu)^{1-\rho}}{1-\rho}, \quad 0 < \nu < \infty$$

also standard except that

$$V(0) = rac{
u^{1-
ho}}{1-
ho} > -\infty \quad \text{and} \quad V_1(0) =
u^{-
ho}.$$

Model

Tastes for Computers, $\rho \geq 1 - \text{Model}$ and Conventional Formulation

Kopecky - 2008

Model

• Demand function for general consumption is

$$c = \mathbf{C}(y, p) = \begin{cases} y, & \text{if } p \ge \widehat{P}(y) \equiv \frac{1-\theta}{\theta} \nu^{-\rho} y^{\rho}, \\ \frac{y+p\nu}{1+\left(\frac{1-\theta}{\theta}\right)^{\frac{1}{\rho}} p^{\frac{\rho-1}{\rho}}}, & \text{if } p < \widehat{P}(y). \end{cases}$$

• Demand function for computers is

$$n = \mathbf{N}(y, p) = \begin{cases} 0, & \text{if } p \ge \widehat{P}(y), \\ \frac{y + p\nu}{p + (\frac{1-\theta}{\theta})^{-\frac{1}{\rho}} p^{\frac{1}{\rho}}} - \nu, & \text{if } p < \widehat{P}(y). \end{cases}$$

Kopecky - 2008

• Computer production technology

$$n = zo,$$

where

- o = share of total output in computer production, z = productivity in computer sector,
- then

$$p = 1/z.$$

- BEA quality-adjusts computer price indices using hedonic methods.
- Quality-adjustment accounts for a large fraction of price decline.

A۱	Average annual change in PC prices, 2001 to 2005				
		percent			
=	unit value	-4.9			
	quality-adjusted	-16.5			
-	difference	-11.5			
	Source: Masshausen and Maulton (2006)				

Source: Wasshausen and Moulton (2006).

Measure 1: Equivalent variation

• additional income, λ_{EV} , needed to satisfy

$$W((1 + \lambda_{\mathbf{EV}})y_{2004}, \infty) = W(y_{2004}, p_{2004}),$$

where

$$W((1 + \lambda_{\mathbf{EV}})y_{2004}, \infty) = \theta \frac{\left[(1 + \lambda_{\mathbf{EV}})y_{2004}\right]^{1-\rho}}{1-\rho} + (1-\theta) \frac{\nu^{1-\rho}}{1-\rho}.$$

Measure 2: Compensating variation

• reduction in income, λ_{CV} , required to satisfy

$$W((1 - \lambda_{\mathbf{CV}})y_{2004}, p_{2004}) = W(y_{2004}, \infty),$$

where

$$W(y_{2004},\infty) = \theta \frac{y_{2004}^{1-\rho}}{1-\rho} + (1-\theta) \frac{\nu^{1-\rho}}{1-\rho}.$$

Goal:

• Compute the welfare gain in 2004 from invention of PC in 1977 and subsequent price decline.

Steps:

- Pin-down preference parameters.
- Calculate compensating and equivalent variations.

Parameters to pin-down:

- *ρ*: determines the elasticity of substitution between computers and general consumption
- *θ*: weight on utility from general consumption net of computers
- *v*: determines marginal utility of zero computer consumption

For each year t from 1977 to 2004 let

- $\mathbf{p}_t =$ quality-adjusted price of PCs relative to aggregate market consumption net of PCs,
- $\mathbf{y}_t = \text{total expenditure},$
- $\mathbf{n}_t =$ quantity of standardized units of computers purchased,

in the data.

Given ρ , θ , and ν the model's prediction for \mathbf{n}_t is

$$\widehat{\mathbf{n}}_t = \mathbf{N}(\mathbf{y}_t, \mathbf{p}_t).$$

Denote this mapping by

$$\widehat{\mathbf{n}}_t = \mathfrak{N}(\rho, \theta, \nu; \mathbf{y}_t, \mathbf{p}_t).$$

Preference parameters are chosen by solving

$$\min_{\boldsymbol{\rho},\boldsymbol{\theta},\boldsymbol{\nu}} \sum_{t=1977}^{2004} [\mathbf{n}_t - \mathfrak{N}(\boldsymbol{\rho},\boldsymbol{\theta},\boldsymbol{\nu};\mathbf{y}_t,\mathbf{p}_t)]^2,$$

subject to $\Re(\rho, \theta, \nu; \mathbf{y}_{1977}, \mathbf{p}_{1977}) = 0.$

Parameter values resulting from minimization:

Para	Value	
ρ	determines elasticity of substitution between computers and consumption	0.993
heta	weight on utility from general cons- umption net of computers	0.994
ν	determines marginal utility of zero computer consumption	5×10^{-4}

Results

Quantity Indexes for Computers: 1977 to 2004–Data and Model

Kopecky - 2008

Welfare gain from PCs as percent of total consumption expenditure:

Measure	Percent
equivalent variation	4.00
compensating variation	3.82

Results

If instead utility is

$$U(c,n) = [\theta c^{\rho} + (1-\theta)(n+\nu)^{\rho}]^{1/\rho},$$

then

$$\rho = 0.007, \qquad \theta = 0.994, \qquad \nu = 5 \times 10^{-4},$$

and welfare gain is

Measure	Percent
equivalent variation	4.00
compensating variation	3.82

Kopecky - 2008

Welfare gain from various new goods as a percent of total consumption expenditure:

Product	Percent	Ratio	Source
PCs	3.91		
Apple-Cinnamon Cheerios	0.002	1955	Hausman (1996)
Minivans	0.029	135	Petrin (2002)
Satellite TV	0.035	117	Goolsbee & Petrin (2004)
Internet	26.8	0.15	Goolsbee & Klenow (2006)

Welfare gain based on alternative methods:

• Hausman's (1999) approximate demand measure:

Welfare Gain = $0.5 \times \begin{pmatrix} \text{share of new good} \\ \text{in expenditure} \end{pmatrix} / \begin{pmatrix} \text{price elasticity} \\ \text{of demand} \end{pmatrix}$

share of computers in expenditure in 2004 = 0.6%price elasticity of demand = 1.83

Welfare Gain = $0.5 \times (0.006) / (1.83) = 0.16\%$

Welfare Gain based on alternative methods:

• Simple Tornqvist index:

$$\ln(T_{2004}) = \frac{1}{2} \left(\begin{array}{c} 2004 \text{ exp.} \\ \text{share} \end{array} + \begin{array}{c} 1977 \text{ exp.} \\ \text{share} \end{array} \right) \ln\left(\frac{p_{2004}}{p_{1977}}\right)$$

Welfare Gain = $\frac{1}{T_{2004}} - 1 = 2.07\%$

Welfare gain from PCs as percent of total consumption expenditure using various measurements:

Measure	Percent
equivalent variation	4.00
compensating variation	3.82
Hausman's approximate demand measure	0.16
Tornqvist index	2.07

Results

For electricity the same exercise yields

Separable utility

 $\rho \quad \theta \quad \nu$ 9.18 << 1 0.0347

compensating variation = 95.4%

• Non-separable utility

 $\begin{array}{cccc} \rho & \theta & \nu \\ -8.8 & << 1 & 0.0364 \end{array}$

compensating variation = 95.3%

Results

For electricity Hausman's (1999) approximate demand measure yields

• welfare gain = 1.9%

using

share of expenditure in $2001^* = 1.5\%$ price elasticity of demand* = 0.39

• welfare gain = 8.0%

using

```
share of expenditure in 1984^* = 2.4\%
price elasticity of demand<sup>*</sup> = 0.15
```

* Source: Reiss and White (2002)

- Simple method for computing welfare gain from innovative new goods.
- Standard model of consumer demand with slightly modified preferences.
- Calibrated using aggregate data.
- Welfare gain from PCs approximately 4 percent of total consumption expenditure.

1. Assume demand curve is

$$\ln q = \alpha \ln p$$

then $\alpha = -\frac{dq}{dp}\frac{p}{q}$ is price elasticity of demand.

2. Approximate demand curve by tangent line at observed price and quantity: (p_1, q_1) ,

$$q = -\alpha \frac{q_1}{p_1}(p - p_1) + q_1.$$

3. Compute compensating variation

$$CV = \frac{1}{2} \frac{p_1 q_1}{\alpha}.$$