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Abstract

The Rouwenhorst method of approximating stationary AR(1) processes has been overlooked

by much of the literature despite having many desirable properties unmatched by other methods.

In particular, we prove that it can match the conditional and unconditional mean and variance,

and the �rst-order autocorrelation of any stationary AR(1) process. These properties make the

Rouwenhorst method more reliable than others in approximating highly persistent processes

and generating accurate model solutions. To illustrate this, we compare the performances of

the Rouwenhorst method and four others in solving the stochastic growth model and an income

�uctuation problem. We �nd that (i) the choice of approximation method can have a large

impact on the computed model solutions, and (ii) the Rouwenhorst method is more robust than

others with respect to variation in the persistence of the process, the number of points used in

the discrete approximation and the procedure used to generate model statistics.
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1 Introduction

In macroeconomic models, the exogenous stochastic process is typically assumed to follow a sta-

tionary �rst-order autoregressive process. For instance, in the standard real business cycle model

the logarithm of the productivity shock is assumed to follow a Gaussian AR(1) process. When

solving these models numerically, the continuous-valued autoregressive process is usually replaced

by a discrete state-space Markov chain. To this end, researchers typically employ the approxima-

tion method proposed by Tauchen (1986), or the quadrature-based method developed in Tauchen

and Hussey (1991). For AR(1) processes with low persistence, these methods can produce highly

accurate approximations. However, their performance deteriorates when the serial correlation is

very close to one.1

These �ndings raise concerns because macroeconomic studies typically employ highly persistent

processes. In particular, there are two main questions that await answers. First, is there a more

reliable technique to approximate highly persistent processes? Second, and more importantly, how

does the performance of these methods a¤ect the computed solutions of macroeconomic models? In

quantitative studies, approximating the exogenous process is seldom an end in itself. Thus a more

appropriate metric for evaluating approximation methods would be their impact on the computed

solutions of the entire model. To the best of our knowledge, no existing studies have performed this

kind of evaluation. The current study is intended to �ll this gap.

The main objective of this paper is to answer the above questions. Regarding the �rst question,

this paper re-examines a Markov-chain approximation method that is �rst proposed in Rouwenhorst

(1995). The main strength of this method is that it can match �ve important statistics of any

stationary AR(1) process, including the conditional and unconditional mean, the conditional and

unconditional variance, and the �rst-order autocorrelation. This property makes the Rouwenhorst

method more reliable than the other methods in approximating highly persistent processes. The

Rouwenhorst method is particularly suited to approximate Gaussian AR(1) processes. This is

because under this method the invariant distribution of the Markov chain converges to a normal

distribution when the number of states is made su¢ ciently large. The �rst contribution of this

1This weakness is also acknowledged in the original papers. In Tauchen (1986, p.179), the author notes that
�Experimentation showed that the quality of the approximation remains good except when � [the serial correlation]
is very close to unity.� In Tauchen and Hussey (1991), the authors note that for processes with high persistence,
�adequate approximation requires successively �ner state spaces.�
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paper is to provide formal proofs of these results.2

Our second contribution is to compare the performances of �ve di¤erent approximation meth-

ods in solving two common macroeconomic models. The methods under study include the Tauchen

(1986) method, the original Tauchen-Hussey method, a variation of this method proposed by Flodén

(2008a), the Adda-Cooper (2003) method and the Rouwenhorst method. The �rst model that we

consider is the prototypical stochastic neoclassical growth model without leisure. The neoclassical

growth model is by far the most common analytical framework in macroeconomics. It is also often

used as the test model for comparing solution methods.3 Most importantly, it is possible to derive

closed-form solutions for the neoclassical growth model under certain speci�cations. This property

of the model provides tremendous convenience for evaluating the accuracy of the approximation

methods. The main evaluation criterion in this application is the accuracy in approximating the

business cycle moments generated by the model. The second model that we consider is an in-

come �uctuation problem. This problem is of interest because it forms an integral part of the

heterogeneous-agent models considered in Aiyagari (1994) and Krusell and Smith (1998). There is

now a large literature that uses these models to examine issues in macroeconomics and �nance. In

terms of computation, the occasionally binding borrowing constraint in this problem makes it more

challenging to solve than the stochastic growth model. In this application, the �ve methods are

evaluated for their accuracy in approximating the degree of inequality in consumption, income and

assets. In both models, we use two di¤erent approaches to compute the statistics of interest. In the

baseline approach, an approximation for the stationary distribution of the state variables is �rst

derived. The statistics are then computed directly from this distribution. In the second approach,

the statistics are generated using Monte Carlo simulations. More speci�cally, we draw a common

set of realizations from the actual AR(1) process and compute the statistics using the computed

policy functions.

Our main �ndings from the stochastic growth model are as follows. Regardless of which approach

is taken, the choice of approximation method can have a large impact on the accuracy of the

computed business cycle moments. Under the baseline approach, a method that generates a good

2Some of these features are brie�y mentioned in Rouwenhorst (1995). But a formal proof of these results is still
lacking.

3The version that we consider is also used in Taylor and Uhlig (1990) and the companion papers to illustrate and
compare di¤erent solution methods. More recently, Aruoba et al. (2006) use the stochastic growth model, but with
labor-leisure choice, to compare di¤erent solution methods.
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approximation for the AR(1) process also tends to yield accurate approximations for the business

cycle moments. The Rouwenhorst method has the best performance in this regard. Furthermore,

the high degree of accuracy of the Rouwenhorst method prevails even when a coarse state space

(with only �ve states for the exogenous shock) is used. An improved version of the Tauchen (1986)

method has the second best overall performance. In the sensitivity analysis, it is shown that the

superior performance of the Rouwenhorst method is robust under a wide range of parameter values.

When the Monte Carlo simulation method is used to generate the business cycle moments,

no single method dominates all others in all cases. With a logarithmic utility function and full

depreciation, the �ve methods yield almost identical results. When a more realistic value of the

depreciation rate is used, the Rouwenhorst method can again produce highly accurate approxima-

tions when there are only �ve states in the Markov chain. The other methods require a much �ner

state space (at least 25 states) in order to produce the same precision as the Rouwenhorst method.

Another interesting �nding is that the baseline approach, equipped with the Rouwenhorst method,

performs as well as the simulation method in generating the business cycle moments. This result

is of interest because the simulation method is considered standard practice in estimating unknown

statistics of stochastic models. However, our results show that a high degree of accuracy in the

business cycle moments generated from the neoclassical growth model can be achieved without

simulation.

As for the income �uctuation problem, our results show that, consistent with the �ndings for the

growth model, the methods which generate good approximations for the AR(1) process also tend

to yield more accurate solutions under the baseline approach. When the persistence of the AR(1)

process is set to 0.9, the Tauchen-Hussey method, Flodén�s variation and the Rouwenhorst method

have the best performance in this regard. When the persistence of the AR(1) process is increased

to 0.977, Flodén�s variation and the Rouwenhorst method continue to have the best performance

but the accuracy of the Tauchen-Hussey method declines signi�cantly. Moreover, the Rouwenhorst

method is again found to be the most robust with respect to a reduction in the number of states

in the Markov chain. In addition, the Rouwenhorst method is the only method that produces

very similar, yet relatively accurate, results under both the baseline approach and the simulation

approach. This shows that the Rouwenhorst method is also the least sensitive to changes in the

procedure used to compute the statistics from the stationary distribution.
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In sum, our quantitative results have two main implications. First, the accuracy of the approx-

imation for the exogenous process can have a large impact on the computed solutions of macro-

economic models. Thus caution must be taken when choosing an approximation method. Second,

our results show that the Rouwenhorst method is the most robust of the �ve methods considered

with respect to the degree of persistence of the AR(1) process, the coarseness of the state-space of

the discrete approximation, and the approach used to compute the statistics from the stationary

distribution. The accuracies of model solutions computed using the Tauchen (1986) method and

the Tauchen-Hussey method, on the other hand, are both sensitive to these choices. It is also worth

noting that the performance of the Tauchen (1986) method is extremely sensitive to the choice of

a free parameter that determines the bounds on the state-space of the discrete process. We show

that choosing this parameter such that the unconditional variances of the discrete and continuous

process coincide greatly increases the performance of this method. This feature of the Tauchen

(1986) method is not documented by the existing literature.

The current study is related to Flodén (2008a) and Lkhagvasuren and Galindev (2008). The ob-

jective of Flodén (2008a) is to compare the relative performance of various discretization methods

in approximating stationary AR(1) processes. However, Flodén does not consider the Rouwen-

horst method, nor does he consider the impact of the discretization procedure on the solutions of

macroeconomic models. The main objective of Lkhagvasuren and Galindev (2008) is to develop an

approximation method for vector autoregressive processes with correlated error terms. Under the

proposed method, the original multivariate process is decomposed into a number of independent

univariate AR(1) processes. These independent processes are then approximated using the conven-

tional methods. Lkhagvasuren and Galindev show, through a few numerical examples, that the

Rouwenhorst method outperforms other methods in approximating moments of univariate AR(1)

processes. In contrast, the current study formally proves that the Rouwenhorst method can be used

to match the key statistics of any stationary AR(1) process.

The rest of this paper is organized as follows. Section 2 presents the Rouwenhorst method and

its main features. Section 3 evaluates the performance of the Rouwenhorst method and four other

discretization methods in solving the stochastic growth model and the income �uctuation problem.

Section 4 concludes.
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2 The Rouwenhorst Method

Consider the AR(1) process

zt = �zt�1 + "t; (1)

where j�j < 1 and "t is a white noise process with variance �2": The AR(1) process is covariance-

stationary with mean zero and variance �2z = �2"=
�
1� �2

�
: If, in addition, "t is normally distributed

in each period, then zt is also normally distributed.

Rouwenhorst (1995) proposes a method to approximate this stochastic process by a discrete

state-space process fytg. This involves constructing an N -state Markov chain characterized by (i) a

symmetric and evenly-spaced state space YN = fy1; :::; yNg ; with y1 = � and yN =  ; and (ii) a

transition matrix �N : For any N � 2; the transition matrix �N is determined by two parameters,

p; q 2 (0; 1) ; and is de�ned recursively as follows:

Step 1: When N = 2; de�ne �2 as

�2 =

264 p 1� p

1� q q

375 :
Step 2: For N � 3; construct the N -by-N matrix

p

264 �N�1 0

00 0

375+ (1� p)
264 0 �N�1

0 00

375+ (1� q)
264 00 0

�N�1 0

375+ q
264 0 00

0 �N�1

375 ;
where 0 is a (N � 1)-by-1 column vector of zeros.

Step 3: Divide all but the top and bottom rows by two so that the elements in each row sum to

one.

The main objective of this section is to show formally that the Rouwenhorst method has a

number of desirable features that are unmatched by other methods. However, the matrix �N

generated by the three-step procedure above is di¢ cult to work with analytically. Thus, we begin

our analysis by o¤ering a new, analytically tractable procedure for generating the Rouwenhorst
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matrix. The main advantage of this new procedure is that it greatly simpli�es the proofs of our

analytical results.

2.1 Reconstructing the Rouwenhorst Matrix

For any p; q 2 (0; 1) and for any integer N � 2; de�ne a system of polynomials as follows

� (t;N; i) � [p+ (1� p) t]N�i (1� q + qt)i�1 ; (2)

for i = 1; 2; :::; N: Expanding the polynomials in (2) yields

� (t;N; i) =
NX
j=1

�
(N)
i;j t

j�1; for i = 1; 2; :::; N: (3)

De�ne an N -by-N matrix �N =
h
�
(N)
i;j

i
using the coe¢ cients in (3). Using the generating function

in (2), one can derive the elements in �N recursively using the elements in �N�1; for N � 1 � 2:

The details of this procedure are described in Appendix A. The main result of this subsection is

Proposition 1 which states that the matrix �N is identical to the Rouwenhorst matrix �N for any

integer N � 2: All proofs can be found in Appendix B.

Proposition 1 For any N � 2 and for any p; q 2 (0; 1) ; the matrix �N de�ned above is identical

to the Rouwenhorst matrix �N generated by Steps 1-3.

The next result states that �N is a stochastic matrix of non-zero entries. To begin with, set

t = 1 in both (2) and (3) to obtain

NX
j=1

�
(N)
i;j = 1; for i = 1; 2; :::; N:

This means the elements in any row of �N sum to one. If, in addition, �(N)i;j � 0 for all i and j,

then �N is a stochastic matrix. This is proved in the following lemma.

Lemma 2 For any N � 2; the matrix �N de�ned above is a stochastic matrix of non-zero entries.
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Table 1: Selected Moments of the Markov Chain

Conditional Mean E(yt+1jyt = yi) (q � p) + (p+ q � 1) yi
Conditional Variance var(yt+1jyt = yi)

4 2

(N�1)2 [(N � i) (1� p) p+ (i� 1) q (1� q)]
Unconditional Mean E(yt)

(q�p) 
2�(p+q)

Unconditional Second Moment E
�
y2t
�

 2
n
1� 4s (1� s) + 4s(1�s)

N�1

o
First-order Autocovariance Cov(yt; yt+1) (p+ q � 1)var(yt)
First-order Autocorrelation Corr(yt; yt+1) p+ q � 1

2.2 Discrete State-Space Markov Chain

Consider a Markov chain fytg with a symmetric and evenly-spaced state space YN = fy1; :::; yNg

de�ned over the interval [� ; ] : The transition matrix of the Markov chain is given by �N =
h
�
(N)
i;j

i
as de�ned above. The following result follows immediately from Lemma 2.

Proposition 3 For any N � 2; the Markov chain with state space YN and transition matrix �N

has a unique invariant distribution �(N) =
�
�
(N)
1 ; :::; �

(N)
N

�
, where �(N)i � 0 and

PN
i=1 �

(N)
i = 1:

Rouwenhorst mentions that in the symmetric case where p = q; the unique invariant distribution

is a binomial distribution with parameters N � 1 and 1=2: Our next result shows that the unique

invariant distribution is binomial for any p; q 2 (0; 1) : Since the invariant distribution is unique,

it can be solved by the guess-and-verify method. Let s � 1�q
2�(p+q) 2 (0; 1) : The guess for �

(N);

represented by b�(N); is a binomial distribution with parameters N � 1 and 1� s: This means

b�(N)i =

�
N � 1
i� 1

�
sN�i (1� s)i�1 ; for i = 1; 2; :::; N: (4)

It is easy to check that this is the actual solution when N = 2: The result for the general case is

established in Proposition 4.

Proposition 4 For any N � 2; the invariant distribution of the Markov chain de�ned above is a

binomial distribution with parameters N � 1 and 1� s:

Equipped with the invariant distribution, one can derive the unconditional moments of the

Markov chain. Some of these moments are shown in Table 1. The mathematical derivations of

these results can be found in Appendix C.
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2.3 Approximating AR(1) Processes

The task at hand is to approximate a given stationary AR(1) process with an N -state Markov

chain.4 Let fztg be the stationary AR(1) process de�ned in (1). Conditional on the realization of

zt�1; the mean and variance of zt are given by �zt�1 and �2"; respectively. Now de�ne an N -state

discrete Markov process fytg as in Section 2.2 with

p = q =
1 + �

2
and  =

p
N � 1�": (5)

Using the equations in Table 1, it is immediate to see that the resulting Markov chain has the

same unconditional mean, unconditional variance and �rst-order autocorrelation as fztg : Suppose

yt�1 = yi for some yi in YN : The conditional mean and conditional variance of yt are given by

E (ytjyt�1 = yi) = �yi and var (ytjyt�1 = yi) = �2":

Thus fytg also has the same conditional mean and conditional variance as fztg :

Two remarks regarding this procedure are worth mentioning. First, under the Rouwenhorst

method, the approximate Markov chain is constructed using � and �2" alone. In particular, the

transition matrix �N is not a discretized version of the conditional distribution of zt: This is the

fundamental di¤erence between this method and the ones proposed in Tauchen (1986) and Tauchen

and Hussey (1991). Second, the above procedure can be applied to any stationary AR(1) process,

including those with very high persistence. Thus, unlike the other two methods, the one proposed

by Rouwenhorst can always match the unconditional variance and the persistence of fztg :

Since the invariant distribution of fytg is a binomial distribution with mean zero and variance

�2y = �2"=(1� �2); the standardized process fyt=�yg converges to the standard normal distribution

as N goes to in�nity. Thus the Rouwenhorst method is particularly apt for approximating Gaussian

AR(1) processes.

4 In this paper, we focus on univariate AR(1) processes only. For vector autoregressive processes, one can combine
the Rouwenhorst method with the decomposition method proposed in Lkhagvasuren and Galindev (2008). More
speci�cally, these authors propose a method to decompose a multivariate process into a number of independent
univariate processes. These independent processes can then be approximated using the Rouwenhorst method described
below.
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3 Evaluations

In this section we examine the performance of the Rouwenhorst method and four other discretization

methods in solving the stochastic growth model and the income �uctuation problem. For the

stochastic growth model, the main evaluation criterion is the accuracy in approximating the business

cycle moments generated by the model. For the income �uctuation problem, we focus on measures

of inequality in consumption, income and assets. The other methods under evaluation are described

below.

Tauchen (1986) method Under this method, an evenly-spaced state space YN = fy1; :::; yNg is

used to construct the Markov chain fytg, with

yN = �y1 = 
�z;

where 
 is a positive real number and �z is the standard deviation of the original AR(1) process. Let

� be the probability distribution function for the standard normal distribution. For any i = 1; :::; N;

the transition probabilities of the Markov chain are given by

�i;j = �

�
yj � �yi + h=2

�"

�
;

for j = 1 and N; and

�i;j = �

�
yj � �yi + h=2

�"

�
� �

�
yj � �yi � h=2

�"

�
;

for j = 2; :::; N�1; where h is the step size between the grid points. It turns out that the performance

of this method is strongly a¤ected by the choice of 
: To the best of our knowledge, there is no

established rule for determining this parameter. Tauchen (1986) sets 
 = 3 without giving any

justi�cation. Flodén (2008a) sets 
 = 1:2 ln (N) : As explained in the results section, Flodén�s

choice of 
 is the main reason why he �nds that the Tauchen (1986) method performs poorly in

approximating highly persistent processes. In all the results reported below, 
 is calibrated such

that the standard deviation of fytg matches the standard deviation of the AR(1) process. This gives

the method its best chance in approximating the AR(1) process. We choose to target �z instead of
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� because, relative to �z, the persistence parameter � is well approximated under this method for

a range of values of 
 and degrees of persistence.

The Quadrature-Based Methods Under this class of methods, the elements of the state space

YN = fy1; :::; yNg are determined by

yi =
p
2�xi; for i = 1; 2; :::; N;

where fxig are the Gauss-Hermite nodes de�ned on [�1;1] : Let
�
�j
	
be the corresponding Gauss-

Hermite weights. The elements in the transition matrix � are then given by

�i;j =
f
�
yj jyi

�
f
�
yj j0

� wj
si
;

where wj = �j=
p
�; the function f (�jyi) is the density function for N

�
�yi; �

2
�
; and

si =
NX
n=1

f (ynjyi)
f (ynj0)

wn:

In Tauchen and Hussey (1991), the standard deviation � is taken to be �": In Flodén (2008a), � is

a weighted average of �z and �": In particular, � = !�" + (1� !)�z with ! = 0:5 + 0:25�:

The Adda-Cooper (2003) Method The �rst step of this method is to partition the real line

into N intervals. These intervals are constructed so that the random variable zt has an equal

probability of falling into them. Formally, let In = [xn; xn+1] be the nth interval with x1 = �1

and xN+1 = +1: The cut-o¤ points fxngNn=2 are the solutions of the following system of equations:

�

�
xn+1
�z

�
� �

�
xn
�z

�
=
1

N
; for n = 1; 2; :::; N;

where � is the probability distribution function for the standard normal distribution. The nth

element in the state space YN = fy1; :::; yNg is the mean value of the nth interval. For any i; j 2

f1; 2; :::; Ng ; the transition probability �i;j is de�ned as the probability of moving from interval Ii

to interval Ij in one period.

11



3.1 Stochastic Growth Model

Consider the planner�s problem in the stochastic growth model,

max
fCt;Kt+1g1t=0

E0

" 1X
t=0

�t log (Ct)

#

subject to

Ct +Kt+1 = exp (at)K
�
t + (1� �)Kt;

at+1 = �at + "t+1; with � 2 (0; 1) ; (6)

Ct;Kt+1 � 0; and K0 given, where Ct denotes consumption at time t; Kt denotes capital, At �

exp (at) is the technological factor and "t+1 � i.i.d. N
�
0; �2"

�
. The parameter � 2 (0; 1) is the

subjective discount factor, � 2 (0; 1) is the share of capital income in total output and � 2 (0; 1] is

the depreciation rate. For any given value of a, de�ne K (a) by

K (a) =

�
exp (a)

�

� 1
1��

:

Then, conditional on at = a; the state space of capital can be restricted to K (a) =
�
0;K (a)

�
: The

state space of the stochastic growth model is given by

S = f(K; a) : K 2 K (a) ; a 2 Rg :

Let 	(K; a) be the feasible choice set for next-period capital when the current state is (K; a) :

Formally, this is de�ned as

	(K; a) =
�
K 0 : exp (a)K� + (1� �)K � K 0 � 0

	
:

The Bellman equation for this problem is

V (K; a) = max
K02	(K;a)

�
log
�
exp (a)K� + (1� �)K �K 0�+ � Z V

�
K 0; a0

�
dF
�
a0ja

��
; (7)

where F (�ja) is the distribution function of at+1 conditional on at = a: The solution of this problem
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includes a value function V : S ! R and a policy function for next-period capital g : S ! R: With

logarithmic utility function and full depreciation, the policy function and the stationary distribution

can be derived analytically. Speci�cally, the policy function for next-period capital (in logarithmic

terms) is given by

kt+1 = g (kt; at) � ln�� + at + �kt: (8)

The stationary distribution of (k; a) is a bivariate normal distribution with mean vector

�0 =

�
ln(��)
1�� 0

�
;

and variance-covariance matrix

� =

264 �2k �ka

�ka �2a

375 ;
where

�2k =
(1 + ��)�2a

(1� �2) (1� ��) ;

�ka =
��2a
1� ��; and �2a =

�2"
1� �2 :

Using these closed-form solutions, we can derive analytically the business cycle moments. These

results are then used to assess the relative performance of �ve di¤erent discretization methods.

Parameterization and Computation

The �rst step in computing the business cycle moments is to assign values for the parameters

f�; �; �; �"; �g : In the baseline scenario, we set � = 1 so that there is full depreciation. The full

depreciation assumption is later relaxed. The other parameter values are chosen to be the same as

in King and Rebelo (1999): � = 0:33; � = 0:984; �" = 0:0072 and � = 0:979:

The next step is to discretize the state space S. First, the AR(1) process in (6) is approximated

using the methods mentioned above. The resulting N -state Markov chain is characterized by a

state space A = fa1; :::; aNg and a transition matrix � = [�i;j ] : Second, the continuous state space

for capital is replaced by an evenly-spaced grid. De�ne the variable k � lnK: The set of grid points
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for k is represented by K =
�
k1; :::; kM

	
. The discretized state space can be expressed by

bS = ��km; an� : km 2 K; an 2 A	 : (9)

In the baseline case, the number of states in the Markov chain is set to �ve and the number of

grid points for capital is 1000. After the discrete state space bS is formed, the value function

and the associated policy function are solved using the value-function iteration method described

in Tauchen (1990) and Burnside (1999). The outcome is a discrete approximation to the policy

function, denoted by
nbg �km; an� : �km; an� 2 bSo :

The business cycle moments are then computed using two di¤erent approaches. Under the

baseline approach, an approximation to the stationary distribution of the state variables (k; a) is

�rst computed. To achieve this, we need to construct the transition matrix for these variables.

Under the discrete state-space method, the probability of moving from state
�
km; an

�
in bS to state�

kl; aj
�
in bS in one period is speci�ed by

Pr
��
k0; a0

�
=
�
kl; aj

�
j (k; a) =

�
km; an

��
=

8><>: �n;j ; if kl = bg �km; an�
0; otherwise.

(10)

The resulting NM -by-NM transition matrix is denoted P: Let b�=(b�1; :::; b�NM ) be the stationary
distribution associated with P: Formally, this is de�ned by

b�P = b�:
In principle, b� can be obtained as the eigenvector of P corresponding to eigenvalue 1, with the

normalization
PNM

i=1 b�i = 1: This method, however, is not practical when the number of grid points
in the state space is large. In the following experiments, an approximation for the stationary

distribution is obtained by iterating on the equation

e�lP = e�l+1: (11)

The iterations proceed until the �distance�between successive iterates, as measured bymax
���e�l � e�l+1��� ;
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is within the desired tolerance. Given the approximate stationary distribution e�l and the policy
function bg; the business cycle moments of interest can be computed.

Under the second approach, the business cycle moments are generated using Monte Carlo simu-

lations. The standard procedure involves the following steps. Draw a common sequence of pseudo-

random numbers of length T = 5; 010; 000 for the disturbance term ":5 Construct the random

variable at using the actual AR(1) process given in (6). The resulting sequence is denoted featgTt=0 :
Construct a sequence of capital

nektoT
t=0

according to

ekt+1 = bg �ekt;eat� ; with ek0 given.
In general, the generated values of ekt and eat will not coincide with the grid points in bS: In this case,
linear interpolation is used to compute the value of bg �ekt;eat� : To ensure that the generated values
of ekt and eat are drawn from the stationary distribution, the �rst 10; 000 observations in either

sequence are deleted. The remaining �ve million observations are used to compute the business

cycle moments.

Baseline Results

Table 2 presents the baseline results. The �ve discretization methods are compared on three grounds:

(i) the accuracy in approximating the AR(1) process, (ii) the precision in approximating the station-

ary distribution of the state variables, and (iii) the accuracy in approximating the business cycle

moments. The table gives the ratio of the statistics computed following the above procedure to

their true values. The true values are derived using the closed-form solutions mentioned above.

Panel (A) of Table 2 shows the performance of these methods in approximating the AR(1)

process. As explained in Section 2.3, the transition matrix in the Rouwenhorst method (R) can be

calibrated to match exactly the persistence parameter, the standard deviation of " and the standard

deviation of a: Similarly the parameter 
 in the Tauchen (1986) method is calibrated to match

exactly the standard deviation of at: The required value is 
 = 1:6425: With this choice of 
; the

Tauchen (1986) method yields a very small relative error (less than one percent) in approximating

5Speci�cally, we use the Mersenne Twister random number generator to generate the pseudorandom numbers. The
generated sequence is �rst adjusted to remove any �rst-order serial correlation in it that may be introduced by the
pseudorandom number generator. The resulting sequence is then transformed to one with mean zero and variance �2:
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the persistence parameter. Our results are in stark contrast to those reported in Flodén (2008a)

Table 2. Using 
 = 1:9313 and N = 5; Flodén shows that this method produces a 12 percent error

in approximating �a and a 1.5 percent error in approximating �: These results illustrate that the

performance of the Tauchen (1986) method is very sensitive to the choice of 
:

Next, we consider the accuracies of these methods in approximating the stationary distribution of

the state variables. Panel (B) of Table 2 shows the performance of these methods in approximating

the standard deviation of k and the covariance between a and k. In general, a discretization

method that generates an accurate approximation for �a also has high precision in approximating

these two moments. Among these �ve methods, the Rouwenhorst method has the highest accuracy

in approximating these two moments. The relative errors for the two are about 0.14 percent.

The Tauchen (1986) method is the second best. These two methods outperform the others by a

signi�cant margin.

Next, we compare the performance of these methods in approximating the business cycle mo-

ments. In particular, we focus on the standard deviation of output, consumption and investment

(in logarithmic terms) and the �rst-order autocorrelation of output (in logarithmic terms).6 The

results are shown in panel (C) of Table 2. Again the Rouwenhorst method has the best overall

performance in terms of approximating all these moments. However, with 
 = 1:6425; the Tauchen

(1986) method can produce highly accurate approximations that are comparable to those generated

by the Rouwenhorst method. As mentioned above, the performance of this method is very sensitive

to the choice of 
: If we set 
 = 1:9313 as in Flodén (2008a), then the Tauchen (1986) method

would generate a 12-percent error in approximating the standard deviations.7

Finally, two things can be observed when comparing across all three panels. First, the relative

errors in approximating �a are very similar to those in approximating the standard deviation of

capital, output, consumption and investment. Second, the relative errors in approximating � are

close to those in approximating the �rst-order autocorrelation for output. These results suggest that

a good approximation for the moments of the AR(1) process is important in obtaining an accurate

approximation for the business cycle moments.

6The �rst-order autocorrelation of consumption and investment (in logarithmic terms), and the cross-correlation
between output and these variables are not shown in the paper. These results are available from the authors upon
request.

7These results are not shown in here but are available from the authors upon request.
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Error Analysis

The relative errors reported in Table 2 have a number of sources. For the purpose of this discussion,

we classify these into two groups. The �rst group of errors arises when solving the Bellman equation

in (7). This includes the errors that arise when we restrict the choice of next-period capital to

a discrete set of values, and the truncation errors that emerge when we approximate the �xed

point of the Bellman equation using a �nite number of iterations. The second group of errors

occurs during the computation of the stationary distribution of the state variables. First, the

transition matrix P , constructed using the discrete Markov chain and the computed policy function,

is an approximation of the actual transition function. Second, truncation errors arise when we

approximate the stationary distribution using a �nite number of iterations. The second group of

errors would not occur if Monte Carlo simulations are used to generate the business cycle moments.

The simulation approach, however, su¤ers from two other types of errors. First, approximation

errors arise when we use linear interpolation to compute the values of bg (k; a) for points outside the
discrete state space. Second, sampling errors arise when we compute the business cycle moments

using �nite samples.8

Using the actual policy function, it is possible to disentangle the two groups of errors in the

baseline approach. Consider the following experiment. Construct a discrete state space bS as in (9)
using one of the �ve discretization methods. Construct the transition matrix P as in (10) but replace

the computed policy function bg (k; a) with the actual one in (8). Iterate equation (11) successively
to obtain an approximation for the stationary distribution of the state variables. Finally, use the

approximate stationary distribution and the actual policy function g (k; a) to compute the business

cycle moments. By replacing bg (k; a) with the actual policy function, this procedure e¤ectively
removes all the errors involved in solving the Bellman equation. The remaining errors are thus

due to the approximation of the stationary distribution of the state variables. The results of this

procedure are reported in panel (B) of Table 3. To facilitate comparison, the baseline results are

shown in panel (A) of the same table.

It is immediate to see that the �gures in the two panels are almost identical. Replacing the

8By the Law of Large Numbers, the sampling error goes to zero as the number of observations approaches in�nity.
However, since our samples are �nite, some sampling errors remain. These errors are small relative to the errors
caused by linear interpolation.
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computed policy function with the actual one does not a¤ect the approximation of the technology

shock process. As a result, the approximated values for �; �" and �a are identical in the two sets

of results. As for the standard deviations of the endogenous variables, only minor discrepancies

are observed in the two panels. In other words, even though we have removed all the errors

in computing the policy function, the baseline results remain largely unchanged. This has two

implications. First, this implies that almost all the relative errors in the baseline case are due to

the approximation of the stationary distribution b�: Second, this means the choice of discretization
method has only a relatively minor impact on the solution of the Bellman equation. In sum, this

experiment illustrates that the choice of discretization method matters because it would signi�cantly

a¤ect the approximation of the stationary distribution.

The same conclusion can be drawn from another experiment. Suppose now the business cycle

moments are computed using Monte Carlo simulations. More speci�cally, after solving the dynamic

programming problem in (7), the model is simulated using the actual AR(1) process and the com-

puted policy function bg (k; a) : Under this procedure, the choice of discretization method only a¤ects
the simulated moments through the computed policy function. Table 4 presents the relative errors

obtained under this procedure alongside with the baseline results. The two methods of generating

business cycle moments have produced very di¤erent results. When the model is simulated using

the actual AR(1) process, all �ve discretization methods generate almost identical results. This

again implies that the di¤erences in the baseline results across the �ve discretization methods are

due to the approximation of the stationary distribution b�:
Finally, when comparing between the two panels of Table 4, one can see that the baseline

approach, when combined with the Rouwenhorst method, can generate estimated moments that are

as accurate as those produced by the simulation method with �ve million draws.

Robustness Check

In this section, it is shown that the relative performance of the �ve discretization methods are robust

to changes in (i) the number of points in the discrete state space N , (ii) the persistence parameter

�, and (iii) the standard deviation of the white noise process �":
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Changing the Number of States Table 5 compares the performance of the �ve methods under

di¤erent choices of N . Notice that the superior performance of the Rouwenhorst method is robust

even when there are only two states in the discrete Markov chain. The relative errors in approx-

imating the standard deviations of output, capital, consumption and investment are similar in all

three cases. In particular, increasing the number of states from �ve to ten increases the precision

only marginally. The original Tauchen-Hussey method has the lowest precision among the �ve in

all three cases. Even when the number of states is increased to ten, the Tauchen-Hussey method

can only replicate 57 percent of the actual value of �y. The performance of this method is much

better when approximating �y but the precision is still the lowest among the �ve.

Next, we consider the performance of the Tauchen (1986) method. For each value of N; we

adjust the parameter 
 so as to match the actual value of �a: The required values for N = 2

and N = 10 are 1.0000 and 1.9847, respectively. In other words, in order to match the standard

deviation �a; a wider state space (i.e., a larger value of 
) is needed when the number of states

increases. When 
 is adjusted in this fashion, increasing the number of states in the Tauchen (1986)

method increases the precision only marginally. For instance, the relative error in approximating

�y reduces from 0.35 percent to 0.22 percent when N increases from �ve to ten.

Changing the Persistence Parameter Table 6 compares the performance of the �ve methods

under di¤erent values of �: The superior performance of the Rouwenhorst method is robust to

changes in this parameter. In particular, increasing the persistence of the AR(1) process from 0.5

to 0.979 has very little impact on its precision. This shows that the Rouwenhorst method is a

reliable technique for approximating stationary AR(1) process in general.

Similar to the results in Table 5, the parameter 
 in the Tauchen (1986) method is adjusted

in each case so as to match the actual value of �a: The resulting values are shown in Table 6. In

general, a wider state space (i.e., a larger value of 
) is needed for less persistent processes. When


 is calibrated to match �a, the Tauchen (1986) method has better performance in approximating

highly persistent processes. For instance, when � = 0:5 the relative errors in approximating �ka and

�y are 4.66 percent and 1.84 percent, respectively. These become 1.34 percent and 0.36 percent,

respectively, when � = 0:979: The precision of this method in approximating the standard deviations

is not sensitive to changes in �:
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The performance of the quadrature-based methods is very sensitive to the value of �: Similar to

Flodén (2008a), our results show that the quadrature-based methods work best in approximating

AR(1) processes with low persistence. But unlike Flodén (2008a) which only focuses on the para-

meters of the AR(1) process, the current study also considers the impact of these methods on the

moments of the endogenous variables. When � equals to 0.5 or 0.6, the original Tauchen-Hussey

method and its variation can generate highly accurate approximations that are comparable to those

generated by the Rouwenhorst method. The relative errors for the business cycle moments are all

less than one percent. Within this range of �; the two quadrature-based methods are more accurate

than the Tauchen (1986) method, especially in approximating �ka and �y. However, the accura-

cies of the Tauchen-Hussey method and Flodén�s variation deteriorate quickly when the persistence

parameter approaches one. For instance, the Tauchen-Hussey method has a relative error of 25

percent in approximating �y when � equals to 0.9 and an error of 61 percent when � is 0.979.

Finally, it is worth mentioning that the results of the two experiments conducted in the error

analysis section are also robust to di¤erent values of the persistence parameter. These results

are summarized as follow.9 First, the �gures reported in Table 6 are largely una¤ected when we

replace the computed policy function with the actual one. Second, when the business cycle moments

are computed using Monte Carlo simulations, all �ve discretization methods generate very similar

results.

Changing the Standard Deviation of the White Noise Process The performance of the

�ve methods under di¤erent values of �" are shown in Table 7. In terms of approximating the

AR(1) process, increasing the value of �" from 0.001 to 0.1 does not seem to a¤ect the performance

of these methods. In terms of approximating the standard deviations of the endogenous variables

and the covariance between a and k; the accuracies of Flodén�s method and the Adda-Cooper

method improve when the AR(1) process is less volatile. The opposite is true for the Rouwenhorst

method and the Tauchen (1986) method. The variations in the relative errors, however, are not

signi�cant. More speci�cally, increasing �" from 0.001 to 0.1 changes the relative errors by less than

two percentage points in most cases. Finally, the precision of all �ve methods in approximating �y

is not sensitive to changes in the value of �":

9The numerical results are not shown in the paper but are available from the authors upon request.
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Relaxing the Assumption of Full Depreciation

This section evaluates the performance of the �ve discretization methods in solving the stochastic

growth model when the full depreciation assumption is relaxed. The rate of depreciation is now

taken to be 2.5 percent, which is the same as in King and Rebelo (1999). All other parameters

remain the same as in the baseline case. Under this parameterization, the business cycle moments of

interest do not have closed-form solutions. Thus we �rst compute a highly accurate approximation

of these moments. To do this we use the Chebyshev parameterized expectation algorithm described

in Christiano and Fisher (2000) to compute the policy function.10 We then generate a sequence of

at of length 50,010,000 using the actual AR(1) process. The �rst 10,000 observations are discarded

and the rest are used to compute the business cycle moments. The solutions obtained are taken as

the �true�solutions of the model.11

Panel (A) of Table 8 shows the results obtained under the baseline approach. The Rouwen-

horst method again has the best overall performance. Most importantly, this method is capable of

producing highly accurate approximations even when N is small. The Tauchen (1986) method has

the second best overall performance, followed by Flodén�s variation of the Tauchen-Hussey method.

However, the performances of these two methods are extremely sensitive to the size of the grid for

at and deteriorate signi�cantly when N decreases. Finally, it is worth noting that the �ve meth-

ods have very di¤erent performances in approximating the covariance between kt and at; especially

when N is small. A method that generates a good approximation for this statistic also tends to

yield accurate approximations for the covariances between yt and other endogenous variables. It

is thus important to choose a method that can match this statistic well. As the table shows, the

Rouwenhorst method generates the most accurate approximation of this covariance and, as a result,

the rest of the business cycle moments.12

10Speci�cally, we compute the continuous shock version of the model using the Chebyshev parameterized expec-
tation approach and the Wright-William speci�cation of the conditional expectation function. The conditional ex-
pectation function is approximated by

PN
i=1 �iCi(k; a); where Ci(k; a); i = 1; : : : ; N are the elements of the set

fTi1(�(k))Ti2( (a))j
P2

j=1 ij � ng and �i; i = 1; : : : ; N are the weights. The functions Tij for j = 1; 2 are the ith
Chebyshev polynomials and � and  are linear mappings of [kmin; kmax] and [�3�; 3�] into the interval [�1; 1]. We
set n = 12 so that N = 78 and we use M = 2; 916 quadrature nodes, 54 in each direction. Further increasing N
and M results in a less than 1 percent change in all the business cycle moments computed. Following Christiano and
Fisher (2000), the conditional expectation is computed using 4-point Gauss-Hermite quadrature.
11The same method is used in both Christiano and Fisher (2000) and Santos and Peralta-Alva (2005) to obtain the

�exact�solutions.
12These results are not shown in the paper to conserve space but are available from the authors upon request.
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Panel (B) of Table 8 reports the simulation results. These results show that the choice of dis-

cretization method matters even when the business cycle moments are computed using Monte Carlo

simulations. This is, in part, because linear interpolation is used to approximate g (kt; at) for values

of kt and at that are outside the discrete state space. The size of the error due to the interpolation

procedure depends on the location of the grid points and hence the choice of the discretization

method. However, as N increases, the state space becomes �ner and the overall error due to inter-

polation decreases. For the Rouwenhorst method, a �ve-fold increase in N only marginally a¤ects

its precision. In fact, this method is able to produce highly accurate approximations even when

N = 5: But for the other methods, such an increase in N generates a signi�cant improvement in

their performance. Consequently, it is only with 25 states in the Markov chain that the Tauchen

(1986) method, the Tauchen-Hussey method and Flodén�s variation can achieve degrees of accuracy

on par with the Rouwenhorst method.

Two additional observations of Table 8 are worth noting. First, in terms of solving the stochastic

growth model, value-function iteration, together with a �ve-state Markov chain constructed using

the Rouwenhorst method, produces highly accurate results that are nearly identical to the �true�

solutions computed using Chebyshev PEA. This is an important �nding because, under the given

parameterization, the �rst method requires substantially less computational time and is signi�cantly

easier to implement than the latter. Second, when comparing between the two panels of Table 2, one

can see that the baseline approach, when combined with the Rouwenhorst method, can generate

estimated moments that are as accurate as those produced by the simulation method with �ve

million draws. Our results thus show that simulation is not necessary to generate accurate statistics.

In fact, it may result in less accuracy than the baseline approach if the sample size is too small.13

3.2 Income Fluctuation Problem

Consider an in�nitely-lived, risk-averse consumer who receives a random labor endowment et in

each period t: The agent can self-insure by borrowing and lending via a single risk-free asset but

there is an upper bound on how much he can borrow. Formally, the consumer�s problem is given

13For instance, the baseline approach with the Rouwenhorst method yields more accurate statistics than the simu-
lation method when only one million draws are used.
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by

max
fct;at+1g1t=0

E0

" 1X
t=0

�t log (ct)

#
;

subject to

ct + at+1 = wet + (1 + r) at;

ln et+1 = � ln et + "t+1; with � 2 (0; 1) ;

ct � 0; and at+1 � �a: The variable ct denotes period t consumption, at denotes period t assets, w

is the wage, r is the return on assets, a � 0 is the borrowing limit and "t+1 �i.i.d. N
�
0; �2"

�
.

Let S be the state space and 	(a; e) be the feasible choice set for next-period assets when the

current state is (a; e) :14 The Bellman equation for the consumer�s problem is given by

V (a; e) = max
a02	(a;e)

�
log
�
we+ (1 + r) a� a0

�
+ �

Z
V
�
a0; e0

�
dF
�
e0je
��

; (12)

where F (�je) is the distribution function of et+1 conditional on et = e: The solution of this problem

includes a value function V : S ! R and a policy function g : S ! R for next-period assets.

Parameterization and Computation

The following parameter values are used in the computation. The subjective discount factor �

is chosen to be 0.96. The borrowing limit a is set to zero so that no borrowing is allowed. The

rate of return r is taken to be 3.75 percent and the wage rate is normalized to one. As for the

labor endowment process, we consider two di¤erent speci�cations that are commonly used in the

literature. In the �rst speci�cation, we follow Aiyagari (1994) and set � = 0:90 and �" = 0:2: In

the second speci�cation, we use the estimates obtained by French (2005), which are � = 0:977 and

�" = 0:12:
15

The computational procedure consists of the following steps: First, we compute a highly accurate

approximation of the inequality measures of interest. Again we use the Chebyshev PEA to compute

14Formally, the state space is de�ned as S = f(a; e) : a � �a and e > 0g and the feasible choice set is de�ned as
	(a; e) = fa0 : we+ (1 + r) a � a0 � �ag :
15Storesletten et al. (1999) report similar estimates for � and �": Pijoan-Mas (2006) uses the estimates reported

in French (2005) in his calibration. Similar values for � and �" are used in other studies including Chang and Kim
(2006, 2007) and Flodén (2008b).
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the policy function a0 = g (a; e) :16 We then generate a sequence of ln et of length 50,010,000 using

the actual AR(1) process. The �rst 10,000 observations are discarded and the rest are used to

compute two inequality measures for consumption, total income and assets. These measures are

the coe¢ cient of variation (CV) and the Gini coe¢ cient. Next, we use value-function iteration with

linear interpolation on the value function to solve the Bellman equation in (12) on a discrete state

space bS: Speci�cally, we form a 25-state Markov chain using each of the �ve methods and use 1,500

grid points for assets.17 We then compute the two inequality measures using the baseline approach

and Monte Carlo simulations. In the baseline approach, we use 15,000 grid points for assets to

compute the stationary distribution. In the Monte Carlo simulations, we generate a sequence of

ln et of length 5,010,000 using the actual AR(1) process, discard the �rst 10,000 and use the rest to

compute the inequality measures.

Results

The ratios of the inequality measures obtained under the baseline approach and the simulation

approach to their �true� values are shown in Panels (A) and (B) of Table 9. The table shows

that for some inequality measures, the results obtained from the discrete state space method di¤er

signi�cantly from the �true� values. In particular, for all �ve discretization methods considered,

the discrete state space method tends to underestimate the degree of wealth inequality under both

approaches. This problem remains even when a 25-state grid for et is used and arises from errors

in the approximation of the policy function that occur when the domain for et is discretized.18

The table also shows that the choice of discretization method is important when using the

baseline approach. Moreover, under this approach, methods that generate relatively more accu-

rate approximations for the persistence and the standard deviation of the AR(1) process also tend

to yield relatively more accurate solutions. This is consistent with the �ndings for the stochastic

growth model. Under Aiyagari�s speci�cation of the labor endowment process, and with N = 25;

16Speci�cally, the same method described in footnote 10 is used to approximate the conditional expectation function.
The only di¤erence is, in this case, we set n = 23 so that N = 276 and we use M = 40; 000; with 200 nodes in each
direction. Further increasing N and M results in a less than 1 percent change in all the moments computed.
17We use a transformation of assets so that there are more grid points around the borrowing limit a: The resulting

grid points are thus not evenly spaced. This procedure is commonly used in solving the income �uctuation problem.
See, for instance, den Haan (2010).
18Note that this result is not due to the coarseness of the asset grids as doubling their size does not improve the

accuracies of these statistics.
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the Tauchen-Hussey method, Flodén�s variation and the Rouwenhorst method have the best per-

formance. Under French�s speci�cation, where the AR(1) process is more persistent, Flodén�s vari-

ation and the Rouwenhorst method continue to have the best performance but the accuracy of the

Tauchen-Hussey method deteriorates signi�cantly. Thus Flodén�s variation and the Rouwenhorst

method are more robust to variations in �. However, the performance of Flodén�s method is rather

sensitive to the choice of N: In particular, the accuracy of this method decreases considerably when

N is lowered from 25 to 10. Meanwhile, the accuracy of the Rouwenhorst method is only marginally

a¤ected by this change. These �ndings illustrate that, under this approach, only the Rouwenhorst

method is robust to changes in both N and �.

In contrast, under the simulation approach, all �ve methods yield very similar results when

Aiyagari�s speci�cation is used. When � is increased to 0:977, larger di¤erences in the simulation

results are observed. However, in this case, no single method dominates the others in all measures.

These results show that a signi�cant amount of the variation in accuracy of the di¤erent methods

under the baseline approach is due to variation in the accuracy of the discrete approximation to

the stationary distribution. Comparing across the two approaches, note that while some methods

perform better than the Rouwenhorst method in some cases, the Rouwenhorst method is the most

consistent across the two approaches.

In sum, the choice of discretization method can have a signi�cant impact on the accuracy of

model solutions. In general, among the �ve methods considered, the Rouwenhorst method is found

to be one of the most accurate. Moreover, it is the most robust to variations in the persistence of the

exogenous process, the number of states in the Markov chain, and the approach used in obtaining

the statistics from the stationary distribution.

4 Conclusions

The main contributions of this paper are two-fold. First, it re-examines the Rouwenhorst method

of approximating stationary AR(1) processes and shows formally that this method can match �ve

important statistics of any stationary AR(1) process. This property makes the Rouwenhorst method

more reliable than other methods in approximating highly persistent processes. Second, it compares

the performances of the Rouwenhorst method and four other methods in solving the stochastic

25



growth model and a standard income �uctuation problem. Our quantitative results show that the

accuracy of the approximation for the exogenous process can have a large impact on the computed

solutions of these models. In particular, a good approximation for the persistence and the standard

deviation of the AR(1) process is important for obtaining accurate approximations of statistics

generated from the models. The Rouwenhorst method has one of the best performances in these

regards. This is because, unlike the other methods, it can generate relatively accurate solutions

when the persistence of the exogenous process is very close to one regardless of the coarseness of the

state space for the Markov chain or the approach used to compute the statistics from the stationary

distribution.
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Table 2 Baseline Results for the Stochastic Growth Model.

(A) Approximating the AR(1) process

Generated Values Relative to True Values

Tauchen T-H F A-C R

� 1.0097 0.9453 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.5019 1.5599 1.0000

�a 1.0000 0.4006 0.7742 0.9471 1.0000

(B) Approximating the Variance-Covariance Matrix for State Variables

Generated Values Relative to True Values

Tauchen T-H F A-C R

�k 1.0053 0.3882 0.7734 0.9330 0.9986

�ka 1.0134 0.1401 0.6071 0.8464 0.9986

(C) Approximating Business Cycle Moments

Generated Values Relative to True Values

Tauchen T-H F A-C R

�y 1.0035 0.3880 0.7763 0.9338 0.9995

�c 1.0026 0.3879 0.7776 0.9343 1.0000

�i 1.0053 0.3882 0.7734 0.9330 0.9986

�y 1.0036 0.9538 1.0063 0.9807 1.0000

T-H stands for the original Tauchen-Hussey method; F stands for the

variation of T-H; A-C stands for the Adda-Cooper method; R stands

for the Rouwenhorst method.

Parameter values: � = 1; � = 0:33; � = 0:984; �"= 0:0072; � = 0:979;

N = 5; M = 1:6425:

27



Table 3 Error Analysis for the Stochastic Growth Model

(A) Using Computed Policy Function (Baseline case)

Generated Values Relative to True Values

Tauchen T-H F A-C R

� 1.0097 0.9453 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.5019 1.5599 1.0000

�a 1.0000 0.4006 0.7742 0.9471 1.0000

�k 1.0053 0.3882 0.7734 0.9330 0.9986

�ka 1.0134 0.1401 0.6071 0.8464 0.9986

�y 1.0035 0.3880 0.7763 0.9338 0.9995

�c 1.0026 0.3879 0.7776 0.9343 1.0000

�i 1.0053 0.3882 0.7734 0.9330 0.9986

�y 1.0036 0.9538 1.0063 0.9807 1.0000

(B) Using Actual Policy Function

Generated Values Relative to True Values

Tauchen T-H F A-C R

� 1.0097 0.9453 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.5019 1.5599 1.0000

�a 1.0000 0.4006 0.7742 0.9471 1.0000

�k 1.0026 0.3880 0.7777 0.9343 1.0000

�ka 1.0107 0.1400 0.6104 0.8475 1.0000

�y 1.0026 0.3879 0.7777 0.9343 1.0000

�c 1.0026 0.3879 0.7777 0.9343 1.0000

�i 1.0026 0.3880 0.7777 0.9343 1.0000

�y 1.0036 0.9537 1.0063 0.9807 1.0000

T-H stands for the original Tauchen-Hussey method; F stands for the

variation of T-H; A-C stands for the Adda-Cooper method; R stands

for the Rouwenhorst method.

Parameter values: � = 1; � = 0:33; � = 0:984; �"= 0:0072; � = 0:979;

N = 5; M = 1:6425:
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Table 4 Baseline Approach vs. Monte Carlo Simulations

(A) Baseline case

Generated Values Relative to True Values

Tauchen T-H F A-C R

� 1.0097 0.9453 1.0096 0.9993 1.0000

�" 0.8167 0.8905 0.5019 1.5599 1.0000

�a 1.0000 0.4006 0.7742 0.9471 1.0000

�k 1.0053 0.3882 0.7734 0.9330 0.9986

�ka 1.0134 0.1401 0.6071 0.8464 0.9986

�y 1.0035 0.3880 0.7763 0.9338 0.9995

�c 1.0026 0.3879 0.7776 0.9343 1.0000

�i 1.0053 0.3882 0.7734 0.9330 0.9986

�y 1.0036 0.9538 1.0063 0.9807 1.0000

(B) Monte Carlo Simulations

Generated Values Relative to True Values

Tauchen T-H F A-C R

� 1.0000 1.0000 1.0000 1.0000 1.0000

�" 1.0000 1.0000 1.0000 1.0000 1.0000

�a 1.0005 1.0005 1.0005 1.0005 1.0005

�k 1.0005 1.0006 1.0006 1.0007 1.0006

�ka 1.0011 1.0011 1.0012 1.0013 1.0011

�y 1.0005 1.0005 1.0006 1.0006 1.0005

�c 1.0005 1.0005 1.0006 1.0006 1.0005

�i 1.0005 1.0006 1.0006 1.0007 1.0006

�y 1.0000 1.0000 1.0000 1.0000 1.0000

T-H stands for the original Tauchen-Hussey method; F stands for the

variation of T-H; A-C stands for the Adda-Cooper method; R stands

for the Rouwenhorst method.

Parameter values: � = 1; � = 0:33; � = 0:984; �"= 0:0072; � = 0:979;

N = 5; M = 1:6425:
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Appendix A

The objective of this section is to derive a set of equations that can be used to describe the elements

in �N : The proof of Proposition 1 is built upon these equations.

To begin with, the elements in the �rst and the last rows of �N can be obtained by expanding

the polynomials [p+ (1� p) t]N�1 and (1� q + qt)N�1 ; respectively. Using the binomial formula,

we can obtain

�
(N)
1;j =

�
N � 1
j � 1

�
pN�j (1� p)j�1 ; (13)

and

�
(N)
N;j =

�
N � 1
j � 1

�
(1� q)N�j qj�1; (14)

for j = 1; 2; :::; N:

For all other rows, i.e., i = 2; :::; N � 1; the elements in �N can be de�ned recursively using the

elements in �N�1: Begin with the system for N � 1 � 2: The system of polynomials is given by

� (t;N � 1; i) = [p+ (1� p) t]N�1�i (1� q + qt)i�1 =
N�1X
j=1

�
(N�1)
i;j tj�1;

for i = 1; :::; N � 1: There are two ways to relate this system to the one for N :

� (t;N; i) = [p+ (1� p) t] � (t;N � 1; i) ; (15)

for i = 1; :::; N � 1; and

� (t;N; i) = (1� q + qt) � (t;N � 1; i� 1) ; (16)

for i = 2; :::; N: Substituting (3) into (15) gives

NX
j=1

�
(N)
i;j t

j�1 = [p+ (1� p) t]
N�1X
j=1

�
(N�1)
i;j tj�1

=

N�1X
j=1

p�
(N�1)
i;j tj�1 +

N�1X
j=1

(1� p)�(N�1)i;j tj ;
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for i = 1; :::; N � 1: Similarly, substituting (3) into (16) would give

NX
j=1

�
(N)
i;j t

j�1 = (1� q + qt)
N�1X
j=1

�
(N�1)
(i�1);jt

j�1

=
N�1X
j=1

(1� q)�(N�1)(i�1);jt
j�1 +

N�1X
j=1

q�
(N�1)
(i�1);jt

j ;

for i = 2; :::; N: The following can be obtained by comparing the coe¢ cients for i = 1; 2; :::; N � 1;

�
(N)
i;1 = p�

(N�1)
i;1 = (1� q)�(N�1)(i�1);1 (17)

�
(N)
i;j = p�

(N�1)
i;j + (1� p)�(N�1)i;(j�1)

= (1� q)�(N)(i�1);j + q�
(N)
(i�1);(j�1); for j = 2; :::; N � 1; (18)

and

�
(N)
i;N = (1� p)�(N�1)i;(N�1) = q�

(N�1)
(i�1);N : (19)

Appendix B

Proof of Proposition 1

Fix N � 2: The elements in the Rouwenhorst matrix �N =
h
�
(N)
i;j

i
are governed by the following

sets of equations:

For the elements in the �rst row,

�
(N)
1;j =

8>>>>>>>>>><>>>>>>>>>>:

p�
(N�1)
1;j if j = 1

p�
(N�1)
1;j + (1� p) �(N�1)1;(j�1) if j = 2; :::; N � 1

(1� p) �(N�1)1;(j�1) if j = N:

(20)

For the elements in the �nal row,
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�
(N)
N;j =

8>>>>>>>>>><>>>>>>>>>>:

(1� q) �(N�1)(N�1);j if j = 1

(1� q) �(N�1)(N�1);j + q�
(N�1)
(N�1);(j�1) if j = 2; :::; N � 1

q�
(N�1)
(N�1);(j�1) if j = N:

(21)

For the elements in row i = 2; :::; N � 1;

�
(N)
i;j =

8>>>><>>>>:
1
2

h
p�
(N�1)
i;j + (1� q) �(N�1)(i�1);j

i
if j = 1

1
2

h
(1� p) �(N�1)i;(j�1) + q�

(N�1)
(i�1);(j�1)

i
if j = N;

(22)

and for j = 2; :::; N � 1;

�
(N)
i;j =

1

2

h
p�
(N�1)
i;j + (1� p) �(N�1)i;(j�1) + (1� q) �

(N�1)
(i�1);j

+q�
(N�1)
(i�1);(j�1)

i
; (23)

For any given �N�1; the system of equations (20)-(23) de�nes a unique �N : Similarly, for any

given �N�1; the system of equations (13)-(19) de�nes a unique �N : Since �2 = �2; it su¢ ce to

show that the elements in �N generated by (13)-(19) satis�es the system (20)-(23).

Consider the �rst row (i.e., i = 1) in �N : According to (13),

�
(N)
11 = pN�1 = p�

(N�1)
11 ;

and

�
(N)
1;N = (1� p)

N�1 = (1� p)�(N�1)1;(N�1):

For j = 2; :::; N � 1; since

�
(N�1)
1;j =

�
N � 2
j � 1

�
pN�1�j (1� p)j�1 ,

�
(N�1)
1;(j�1) =

�
N � 2
j � 2

�
pN�j (1� p)j�2 ;
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and �
N � 1
j � 1

�
=

�
N � 2
j � 1

�
+

�
N � 2
j � 2

�
;

we have

�
(N)
1;j = p�

(N�1)
1;j + (1� p)�(N�1)1;(j�1):

This shows that the elements in the �rst row of �N satis�es (20). Using (14) and the same procedure,

one can show that the elements in the last row of �N satis�es (21).

The rest of the proof follows immediately from (17)-(19). For any row i = 2; :::; N � 1 in �N ;

(17) implies

�
(N)
i;1 =

1

2

h
p�

(N�1)
i;1 + (1� q)�(N�1)(i�1);1

i
:

Similarly, (18) and (19) imply

�
(N)
i;N =

1

2

h
(1� p)�(N�1)i;(N�1) + q�

(N�1)
(i�1);N

i
;

and

�
(N)
ij =

1

2

h
p�

(N�1)
ij + (1� p)�(N�1)i;(j�1) + (1� q)�

(N�1)
(i�1);j

+q�
(N�1)
(i�1);(j�1)

i
; (24)

for j = 2; :::; N � 1; respectively. Thus all the elements in row i = 2; :::; N � 1 in �N satis�es (22)

and (23). This completes the proof.

Proof of Lemma 2

It su¢ ce to check that all the elements of �N are strictly positive. From (13) and (14), it is obvious

that the elements in the �rst and the last rows are strictly positive. For the other rows, a simple

induction argument is used. First, �2 is a stochastic matrix with non-zero entries. Suppose the

result is true for N � 1 � 2: It follows from (17)-(19) that �(N)ij > 0 for i = 2; :::; N � 1 and for

j = 1; 2; :::; N: This completes the proof.
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Proof of Proposition 4

As mentioned in the proof of Proposition 1, the �rst column of �N is given by

�
(N)
i;1 = pN�i (1� q)i�1 ;

for i = 1; 2; :::; N: De�ne b�(N)i as in (4). Then

NX
i=1

b�(N)i �
(N)
i;1 =

NX
i=1

�
N � 1
i� 1

�
sN�i (1� s)i�1 pN�i (1� q)i�1

=

NX
i=1

�
N � 1
i� 1

�
(sp)N�i (1� s)i�1 (1� q)i�1

= [sp+ (1� s) (1� q)]N

= sN = b�(N)1 :

For all other columns except the �rst one, an induction argument is used to prove the result.

As mentioned in the text, the guess is correct when N = 2: Suppose the guess is correct for some

N � 2; i.e.,

b�(N)j =
NX
i=1

b�(N)i �
(N)
i;j ; for j = 1; 2; :::; N: (25)

We have already proved that this is true when j = 1; so proceeds to j = 2; :::; N + 1:

Using (4), the following can be derived

b�(N+1)i =

8>>>><>>>>:
sb�(N)i for i = 1

sb�(N)i + (1� s) b�(N)i�1 for i = 2; :::; N;

(1� s) b�(N)i�1 for i = N + 1:

(26)
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Using these one can obtain

N+1X
i=1

b�(N+1)i �
(N+1)
i;j

= b�(N+1)1 �
(N+1)
1;j +

NX
i=2

b�(N+1)i �
(N+1)
i;j + b�(N+1)N+1 �

(N+1)
(N+1);j

= sb�(N)1 �
(N+1)
1;j +

NX
i=2

h
sb�(N)i + (1� s) b�(N)i�1

i
�
(N+1)
i;j + (1� s) b�(N+1)N �

(N+1)
(N+1);j

=
NX
i=1

sb�(N)i �
(N+1)
i;j +

N�1X
i=1

(1� s) b�(N)i �
(N+1)
(i+1);j + (1� s) b�(N+1)N �

(N+1)
(N+1);j

=

NX
i=1

sb�(N)i �
(N+1)
i;j +

NX
i=1

(1� s) b�(N)i �
(N+1)
(i+1);j : (27)

Based on (18), the following can be obtained

�
(N+1)
i;j = p�

(N)
i;j + (1� p)�(N)i;j�1;

and

�
(N+1)
i+1;j = (1� q)�(N)i;j + q�

(N)
i;(j�1);

for j = 2; 3; :::; N: Substituting these into (27) gives

N+1X
i=1

b�(N+1)i �
(N+1)
i;j

= s

NX
i=1

b�(N)i

h
p�

(N)
i;j + (1� p)�(N)i;(j�1)

i
+ (1� s)

NX
i=1

b�(N)i

h
(1� q)�(N)i;j + q�

(N)
i;(j�1)

i
= [sp+ (1� s) (1� q)]

NX
i=1

b�(N)i �
(N)
i;j + [s (1� p) + (1� s) q]

NX
i=1

b�(N)i �
(N)
i;(j�1):

Using the induction hypothesis (25), the following can be obtained

N+1X
i=1

b�(N+1)i �
(N+1)
i;j = [sp+ (1� s) (1� q)] b�(N)j + [s (1� p) + (1� s) q] b�(N)j�1

= sb�(N)j + (1� s) b�(N)j�1

= b�(N+1)j ;
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for j = 2; 3; :::; N: The last line is obtained by using (26). Since
PN+1

i=1
b�(N+1)i = 1 and

PN+1
j=1 �

(N+1)
i;j =

1; the remaining equation

N+1X
i=1

b�(N+1)i �
(N+1)
i;j = b�(N+1)j ; for j = N + 1;

must be satis�ed. This completes the proof.

Appendix C

The objective of this section is to derive the moments listed on Table 1. Since it is understood

that these are moments for an N -state Markov chain, the notations �(N)i;j and �(N)j are simpli�ed to

become �i;j and �j ; respectively.

Preliminaries

The following result is used in deriving the conditional mean for the Markov chain.

Lemma 5 For any N � 2; and for i = 1; :::; N;

NX
j=1

�i;j (j � 1) = (1� p) (N � i) + (i� 1) q; (28)

NX
j=1

�1;j (j � 1)2 =

24 NX
j=1

�i;j (j � 1)

352 + (N � i) (1� p) p+ (i� 1) q (1� q) : (29)

Proof. Recall the following expression

[p+ (1� p) t]N�i (1� q + qt)i�1 =
NX
j=1

�i;jt
j�1; (30)

for i = 1; :::; N: Equation (28) can be obtained in two steps: (i) Di¤erentiate both sides of (30) with

respect to t: (ii) Set t = 1:
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Equation (29) can be obtained as follows: Fix i = 1; :::; N: Di¤erentiate both sides of (30) with

respect to t twice and set t = 1. This gives

NX
j=1

�i;j (j � 1) (j � 2) =

NX
j=1

�i;j (j � 1)2 �
NX
j=1

�i;j (j � 1)

= [(N � i) (1� p) + (i� 1) q]2 � (N � i) (1� p)2 � (i� 1) q2

=

24 NX
j=1

�i;j (j � 1)

352 � (N � i) (1� p)2 � (i� 1) q2:

Equation (29) can be obtained by combining this and equation (28). This completes the proof of

Lemma 5.

The following equations are useful in deriving the other moments. For a binomial distribution

with parameters N � 1 and 1� s; the �rst two moments are given by

NX
i=1

�
N � 1
i� 1

�
sN�i (1� s)i�1 (i� 1) = (N � 1) (1� s) ; (31)

NX
i=1

�
N � 1
i� 1

�
sN�i (1� s)i�1 (i� 1)2

= (N � 1) (1� s) s+ (N � 1)2 (1� s)2 : (32)

Conditional Mean

We are now ready to compute the conditional means. Conditional on yt = yi; the mean value of

yt+1 is given by

E (yt+1jyt = yi) =
NX
j=1

�i;jyj =
NX
j=1

�i;j

�
� + 2 

N � 1 (j � 1)
�

= � + 2 

N � 1

NX
j=1

�i;j (j � 1) :
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It follows from (28) that

NX
j=1

�i;j (j � 1) = (1� p) (N � i) + (i� 1) q

= (1� p) (N � 1) + (q + p� 1) (i� 1) :

Hence

E (yt+1jyt = yi) = � + 2 

N � 1 [(1� p) (N � 1) + (q + p� 1) (i� 1)]

= � + 2 (1� p) + (q + p� 1) 2 

N � 1 (i� 1)

= (q � p) + (q + p� 1) yi: (33)

Conditional Variance

Conditional on yt = yi; the variance of yt+1 is given by

var (yt+1jyi) =
NX
j=1

�i;jy
2
j �

0@ NX
j=1

�i;jyj

1A2

;

where
NX
j=1

�i;jy
2
j =  2 � 4 2

N � 1

NX
j=1

�i;j (j � 1) +
4 2

(N � 1)2
NX
j=1

�i;j (j � 1)2 ;

and 0@ NX
j=1

�ijyj

1A2

=  2 � 4 2

N � 1

NX
j=1

�i;j (j � 1) +
4 2

(N � 1)2

24 NX
j=1

�i;j (j � 1)

352 :
It follows from (29) that

var (yt+1jyi) =
4 2

(N � 1)2
[(N � i) (1� p) p+ (i� 1) q (1� q)] :

46



Unconditional Mean

The unconditional mean of the Markov chain is given by

NX
i=1

�iyi =
NX
i=1

�iE (yt+1jyt = yi)

=
NX
i=1

�i [(q � p) + (q + p� 1) yi]

= (q � p) + (q + p� 1)
NX
i=1

�iyi:

Hence
NX
i=1

�iyi =
(q � p) 
2� (p+ q) � �: (34)

Unconditional Second Moment

NX
i=1

�iy
2
i =

NX
i=1

�i

�
� + 2 

N � 1 (i� 1)
�2

=
NX
i=1

�i

�
 2 � 4 2

N � 1 (i� 1) +
4 2

(N � 1)2
(i� 1)2

�

=  2 � 4 2

N � 1

NX
i=1

�i (i� 1) +
4 2

(N � 1)2
NX
i=1

�i (i� 1)2 :

Using (31) and (32), we have

NX
i=1

�iy
2
i =  2 � 4 2 (1� s) + 4 

2 (1� s) s
N � 1 + 4 2 (1� s)2

=  2
�
1� 4 (1� s) s+ 4 (1� s) s

N � 1

�
:
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First-order Autocovariance

First consider the following expression,

E (ytyt+1) =
NX
i=1

�iE (yt+1ytjyt = yi)

=
NX
i=1

�iyiE (yt+1jyt = yi) :

Using (33), we have

E (ytyt+1) =
NX
i=1

�iyi [(q � p) + (q + p� 1) yi]

= (q � p) 
NX
i=1

�iyi + (q + p� 1)
NX
i=1

�iy
2
i : (35)

Let �2y be the unconditional variance of the Markov chain so that

�2y =
NX
i=1

�iy
2
i � �2;

where � is the unconditional mean de�ned in (34). Substituting this into (35) gives

E (ytyt+1)

= (q � p) �+ (q + p� 1)
�
�2y + �

2
�

= [(q � p) + (q + p� 1)�]�+ (q + p� 1)�2y;

where

(q � p) + (q + p� 1)� = (q � p) 
2� (p+ q) = �:

Hence

E (ytyt+1) = �2 + (q + p� 1)�2y:

Thus the �rst-order autocovariance is given by

E [(yt � �) (yt+1 � �)] = E (ytyt+1)� �2 = (q + p� 1)�2y:
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