

3
Calling C and Fortran
Programs from MATLAB

Although MATLAB is a complete, self-contained environment for programming and manipulating
data, it is often useful to interact with data and programs external to the MATLAB environment.
MATLAB provides an interface to external programs written in the C and Fortran languages.

Introducing MEX-Files (p. 3-2) Using MEX-files, mx routines, and mex routines

MATLAB Data (p. 3-4) Data types you can use in MEX-files

Building MEX-Files (p. 3-9) Compiling and linking your MEx-file

Custom Building MEX-Files (p. 3-18) Platform-specific instructions on custom building

Troubleshooting (p. 3-28) Troubleshooting some of the more common problems you
may encounter

Additional Information (p. 3-38) Files you should know about, example programs, where to
get help

3 Calling C and Fortran Programs from MATLAB

3-2

Introducing MEX-Files
You can call your own C or Fortran subroutines from MATLAB as if they were
built-in functions. MATLAB callable C and Fortran programs are referred to
as MEX-files. MEX-files are dynamically linked subroutines that the MATLAB
interpreter can automatically load and execute.

MEX-files have several applications:

• Large pre-existing C and Fortran programs can be called from MATLAB
without having to be rewritten as M-files.

• Bottleneck computations (usually for-loops) that do not run fast enough in
MATLAB can be recoded in C or Fortran for efficiency.

MEX-files are not appropriate for all applications. MATLAB is a
high-productivity system whose specialty is eliminating time-consuming,
low-level programming in compiled languages like Fortran or C. In general,
most programming should be done in MATLAB. Don’t use the MEX facility
unless your application requires it.

Using MEX-Files
MEX-files are subroutines produced from C or Fortran source code. They
behave just like M-files and built-in functions. While M-files have a
platform-independent extension, .m, MATLAB identifies MEX-files by
platform-specific extensions. This table lists the platform-specific extensions
for MEX-files.

Table 3-1: MEX-File Extensions

Platform MEX-File Extension

HP-UX mexhpux

Linux mexglx

Macintosh mexmac

Solaris mexsol

Windows dll

Introducing MEX-Files

3-3

You can call MEX-files exactly as you would call any M-function. For example,
a MEX-file called conv2.mex on your disk in the MATLAB datafun toolbox
directory performs a 2-D convolution of matrices. conv2.m only contains the
help text documentation. If you invoke the function conv2 from inside
MATLAB, the interpreter looks through the list of directories on the MATLAB
search path. It scans each directory looking for the first occurrence of a file
named conv2 with the corresponding filename extension from the table or .m.
When it finds one, it loads the file and executes it. MEX-files take precedence
over M-files when like-named files exist in the same directory. However, help
text documentation is still read from the .m file.

The Distinction Between mx and mex Prefixes
Routines in the API that are prefixed with mx allow you to create, access,
manipulate, and destroy mxArrays. Routines prefixed with mex perform
operations back in the MATLAB environment.

mx Routines
The array access and creation library provides a set of array access and
creation routines for manipulating MATLAB arrays. These subroutines, which
are fully documented in the online API reference pages, always start with the
prefix mx. For example, mxGetPi retrieves the pointer to the imaginary data
inside the array.

Although most of the routines in the array access and creation library let you
manipulate the MATLAB array, there are two exceptions — the IEEE routines
and memory management routines. For example, mxGetNaN returns a double,
not an mxArray.

mex Routines
Routines that begin with the mex prefix perform operations back in the
MATLAB environment. For example, the mexEvalString routine evaluates a
string in the MATLAB workspace.

Note mex routines are only available in MEX-functions.

3 Calling C and Fortran Programs from MATLAB

3-4

MATLAB Data
Before you can program MEX-files, you must understand how MATLAB
represents the many data types it supports. This section discusses the
following topics:

• “The MATLAB Array”

• “Data Storage”

• “Data Types in MATLAB”

• “Using Data Types”

The MATLAB Array
The MATLAB language works with only a single object type: the MATLAB
array. All MATLAB variables, including scalars, vectors, matrices, strings, cell
arrays, structures, and objects are stored as MATLAB arrays. In C, the
MATLAB array is declared to be of type mxArray. The mxArray structure
contains, among other things:

• Its type

• Its dimensions

• The data associated with this array

• If numeric, whether the variable is real or complex

• If sparse, its indices and nonzero maximum elements

• If a structure or object, the number of fields and field names

Data Storage
All MATLAB data is stored columnwise, which is how Fortran stores matrices.
MATLAB uses this convention because it was originally written in Fortran. For
example, given the matrix

a=['house'; 'floor'; 'porch']
a =
 house
 floor
 porch

MATLAB Data

3-5

its dimensions are

size(a)
ans =
 3 5

and its data is stored as

Data Types in MATLAB

Complex Double-Precision Matrices
The most common data type in MATLAB is the complex double-precision,
nonsparse matrix. These matrices are of type double and have dimensions
m-by-n, where m is the number of rows and n is the number of columns. The data
is stored as two vectors of double-precision numbers – one contains the real
data and one contains the imaginary data. The pointers to this data are
referred to as pr (pointer to real data) and pi (pointer to imaginary data),
respectively. A real-only, double-precision matrix is one whose pi is NULL.

Numeric Matrices
MATLAB also supports other types of numeric matrices. These are
single-precision floating-point and 8-, 16-, and 32-bit integers, both signed and
unsigned. The data is stored in two vectors in the same manner as
double-precision matrices.

Logical Matrices
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical 1 or logical 0 to indicate whether a certain condition was found
to be true or not. For example, the statement (5 * 10) > 40 returns a logical 1
value.

h f p o l o u o r s o c e r h

3 Calling C and Fortran Programs from MATLAB

3-6

MATLAB Strings
MATLAB strings are of type char and are stored the same way as unsigned
16-bit integers except there is no imaginary data component. Unlike C,
MATLAB strings are not null terminated.

Cell Arrays
Cell arrays are a collection of MATLAB arrays where each mxArray is referred
to as a cell. This allows MATLAB arrays of different types to be stored together.
Cell arrays are stored in a similar manner to numeric matrices, except the data
portion contains a single vector of pointers to mxArrays. Members of this vector
are called cells. Each cell can be of any supported data type, even another cell
array.

Structures
A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n
is the number of fields in the structure. Members of the data vector are called
fields. Each field is associated with a name stored in the mxArray.

Objects
Objects are stored and accessed the same way as structures. In MATLAB,
objects are named structures with registered methods. Outside MATLAB, an
object is a structure that contains storage for an additional classname that
identifies the name of the object.

Multidimensional Arrays
MATLAB arrays of any type can be multidimensional. A vector of integers is
stored where each element is the size of the corresponding dimension. The
storage of the data is the same as matrices.

Empty Arrays
MATLAB arrays of any type can be empty. An empty mxArray is one with at
least one dimension equal to zero. For example, a double-precision mxArray of
type double, where m and n equal 0 and pr is NULL, is an empty array.

MATLAB Data

3-7

Sparse Matrices
Sparse matrices have a different storage convention than full matrices in
MATLAB. The parameters pr and pi are still arrays of double-precision
numbers, but there are three additional parameters, nzmax, ir, and jc:

• nzmax is an integer that contains the length of ir, pr, and, if it exists, pi. It
is the maximum possible number of nonzero elements in the sparse matrix.

• ir points to an integer array of length nzmax containing the row indices of the
corresponding elements in pr and pi.

• jc points to an integer array of length N+1 that contains column index
information. For j, in the range 0 ≤ j ≤ N-1, jc[j] is the index in ir and pr
(and pi if it exists) of the first nonzero entry in the jth column and
jc[j+1] - 1 index of the last nonzero entry. As a result, jc[N] is also equal
to nnz, the number of nonzero entries in the matrix. If nnz is less than nzmax,
then more nonzero entries can be inserted in the array without allocating
additional storage.

Using Data Types
You can write MEX-files, MAT-file applications, and engine applications in C
that accept any data type supported by MATLAB. In Fortran, only the creation
of double-precision n-by-m arrays and strings are supported. You can treat C
and Fortran MEX-files, once compiled, exactly like M-functions.

The explore Example
There is an example MEX-file included with MATLAB, called explore, that
identifies the data type of an input variable. The source file for this example is
in the <matlab>/extern/examples/mex directory, where <matlab> represents
the top-level directory where MATLAB is installed on your system.

Note In platform independent discussions that refer to directory paths, this
book uses the UNIX convention. For example, a general reference to the mex
directory is <matlab>/extern/examples/mex.

3 Calling C and Fortran Programs from MATLAB

3-8

For example, typing

cd([matlabroot '/extern/examples/mex']);
x = 2;
explore(x);

produces this result

--
Name: prhs[0]
Dimensions: 1x1
Class Name: double
--

(1,1) = 2

explore accepts any data type. Try using explore with these examples.

explore([1 2 3 4 5])
explore 1 2 3 4 5
explore({1 2 3 4 5})
explore(int8([1 2 3 4 5]))
explore {1 2 3 4 5}
explore(sparse(eye(5)))
explore(struct('name', 'Joe Jones', 'ext', 7332))
explore(1, 2, 3, 4, 5)

Building MEX-Files

3-9

Building MEX-Files
This section covers the following topics:

• “Compiler Requirements”

• “Testing Your Configuration on UNIX”

• “Testing Your Configuration on Windows”

• “Specifying an Options File”

Compiler Requirements
Your installed version of MATLAB contains all the tools you need to work with
the API. MATLAB includes a C compiler for the PC called Lcc, but does not
include a Fortran compiler. If you choose to use your own C compiler, it must
be an ANSI C compiler. Also, if you are working on a Microsoft Windows
platform, your compiler must be able to create 32-bit windows dynamically
linked libraries (DLLs).

MATLAB supports many compilers and provides preconfigured files, called
options files, designed specifically for these compilers. The Options Files table
lists all supported compilers and their corresponding options files. The purpose
of supporting this large collection of compilers is to provide you with the
flexibility to use the tool of your choice. However, in many cases, you simply can
use the provided Lcc compiler with your C code to produce your applications.

The MathWorks also maintains a list of compilers supported by MATLAB at
the following location on the web:
http://www.mathworks.com/support/tech-notes/1600/1601.shtml.

Note The MathWorks provides an option (setup) for the mex script that lets
you easily choose or switch your compiler.

The following sections contain configuration information for creating
MEX-files on UNIX and Windows systems. More detailed information about
the mex script is provided in “Custom Building MEX-Files” on page 3-18. In
addition, there is a section on “Troubleshooting” on page 3-28, if you are having
difficulties creating MEX-files.

3 Calling C and Fortran Programs from MATLAB

3-10

Testing Your Configuration on UNIX
The quickest way to check if your system is set up properly to create MEX-files
is by trying the actual process. There is C source code for an example,
yprime.c, and its Fortran counterpart, yprimef.F and yprimefg.F, included in
the <matlab>/extern/examples/mex directory, where <matlab> represents
the top-level directory where MATLAB is installed on your system.

To compile and link the example source files, yprime.c or yprimef.F and
yprimefg.F, on UNIX, you must first copy the file(s) to a local directory, and
then change directory (cd) to that local directory.

At the MATLAB prompt, type

mex yprime.c

This uses the system compiler to create the MEX-file called yprime with the
appropriate extension for your system.

You can now call yprime as if it were an M-function.

yprime(1,1:4)
ans =
 2.0000 8.9685 4.0000 -1.0947

To try the Fortran version of the sample program with your Fortran compiler,
at the MATLAB prompt, type

mex yprimef.F yprimefg.F

In addition to running the mex script from the MATLAB prompt, you can also
run the script from the system prompt.

Selecting a Compiler
To change your default compiler, you select a different options file. You can do
this anytime by using the command

mex -setup

 Using the 'mex -setup' command selects an options file that is
 placed in ~/matlab and used by default for 'mex'. An options
 file in the current working directory or specified on the
 command line overrides the default options file in ~/matlab.

Building MEX-Files

3-11

 Options files control which compiler to use, the compiler and
 link command options, and the runtime libraries to link
 against.

 To override the default options file, use the 'mex -f' command
 (see 'mex -help' for more information).

The options files available for mex are:

 1: <matlab>/bin/gccopts.sh :
 Template Options file for building gcc MEXfiles

 2: <matlab>/bin/mexopts.sh :
 Template Options file for building MEXfiles using the
 system ANSI compiler

Enter the number of the options file to use as your default options
file:

Select the proper options file for your system by entering its number and
pressing Return. If an options file doesn’t exist in your MATLAB directory, the
system displays a message stating that the options file is being copied to your
user-specific matlab directory. If an options file already exists in your matlab
directory, the system prompts you to overwrite it.

Note The setup option creates a user-specific matlab directory in your
individual home directory and copies the appropriate options file to the
directory. (If the directory already exists, a new one is not created.) This
matlab directory is used for your individual options files only; each user can
have his or her own default options files (other MATLAB products may place
options files in this directory). Do not confuse these user-specific matlab
directories with the system matlab directory, where MATLAB is installed. To
see the name of this directory on your machine, use the MATLAB command
prefdir.

Using the setup option resets your default compiler so that the new compiler is
used every time you use the mex script.

3 Calling C and Fortran Programs from MATLAB

3-12

Testing Your Configuration on Windows
Before you can create MEX-files on the Windows platform, you must configure
the default options file, mexopts.bat, for your compiler. The switch, setup,
provides an easy way for you to configure the default options file. To configure
or change the options file at anytime, run

mex -setup

from either the MATLAB or DOS command prompt.

Selecting a Compiler
MATLAB includes a C compiler, Lcc, that you can use to create C MEX-files.
The mex script will use the Lcc compiler automatically if you do not have a C or
C++ compiler of your own already installed on your system and you try to
compile a C MEX-file. Naturally, if you need to compile Fortran programs, you
must supply your own supported Fortran compiler.

The mex script uses the filename extension to determine the type of compiler to
use for creating your MEX-files. For example,

mex test1.f

would use your Fortran compiler and

mex test2.c

would use your C compiler.

On Systems without a Compiler. If you do not have your own C or C++ compiler on
your system, the mex utility automatically configures itself for the included Lcc
compiler. So, to create a C MEX-file on these systems, you can simply enter

mex filename.c

This simple method of creating MEX-files works for the majority of users.

If using the included Lcc compiler satisfies your needs, you can skip ahead in
this section to “Building the MEX-File on Windows” on page 3-14.

On Systems with a Compiler. On systems where there is a C, C++, or Fortran
compiler, you can select which compiler you want to use. Once you choose your
compiler, that compiler becomes your default compiler and you no longer have

Building MEX-Files

3-13

to select one when you compile MEX-files. To select a compiler or change to
existing default compiler, use mex setup.

This example shows the process of setting your default compiler to the
Microsoft Visual C++ Version 6.0 compiler.

mex -setup

Please choose your compiler for building external interface (MEX)
files.

Would you like mex to locate installed compilers [y]/n? n

Select a compiler:
[1] Compaq Visual Fortran version 6.6
[2] Lcc C version 2.4
[3] Microsoft Visual C/C++ version 6.0

[0] None

Compiler: 3

Your machine has a Microsoft Visual C/C++ compiler located at
D:\Applications\Microsoft Visual Studio. Do you want to use this
compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: C:\Program Files\Microsoft Visual Studio

Are these correct?([y]/n): y

The default options file:
"C:\WINNT\Profiles\username\ApplicationData\MathWorks\MATLAB\R13
\mexopts.bat" is being updated from ...

3 Calling C and Fortran Programs from MATLAB

3-14

If the specified compiler cannot be located, you are given the message:

The default location for compiler-name is directory-name,
but that directory does not exist on this machine.

Use directory-name anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used every time you use the mex script.

Building the MEX-File on Windows
There is example C source code, yprime.c, and its Fortran counterpart,
yprimef.f and yprimefg.f, included in the <matlab>\extern\examples\mex
directory, where <matlab> represents the top-level directory where MATLAB
is installed on your system.

To compile and link the example source file on Windows, at the MATLAB
prompt, type

cd([matlabroot '\extern\examples\mex'])
mex yprime.c

This should create the MEX-file called yprime with the .DLL extension, which
corresponds to the Windows platform.

You can now call yprime as if it were an M-function.

yprime(1,1:4)
ans =
 2.0000 8.9685 4.0000 -1.0947

To try the Fortran version of the sample program with your Fortran compiler,
switch to your Fortran compiler using mex -setup. Then, at the MATLAB
prompt, type

cd([matlabroot '\extern\examples\mex'])
mex yprimef.f yprimefg.f

In addition to running the mex script from the MATLAB prompt, you can also
run the script from the system prompt.

Building MEX-Files

3-15

Specifying an Options File
You can use the -f option to specify an options file on either UNIX or Windows.
To use the -f option, at the MATLAB prompt type

mex filename -f <optionsfile>

and specify the name of the options file along with its pathname. The Options
Files table, below, contains a list of the options files included with MATLAB.

There are several situations when it may be necessary to specify an options file
every time you use the mex script. These include:

• (Windows and UNIX) You want to use a different compiler (and not use the
-setup option), or you want to compile MAT or engine stand-alone programs.

• (UNIX) You do not want to use the system C compiler.

Preconfigured Options Files
MATLAB includes some preconfigured options files that you can use with
particular compilers. The Options Files table lists the compilers whose options
files are included with this release of MATLAB.

Table 3-2: Options Files

Platform Compiler Options File

Windows Borland C++, Version 5.0 & 5.2 bccopts.bat

Borland C++Builder 3.0 (Borland
C++, Version 5.3)

bcc53opts.bat

Borland C++Builder 4.0 (Borland
C++, Version 5.4)

bcc54opts.bat

Borland C++Builder 5.0 (Borland
C++, Version 5.5)

bcc55opts.bat

Lcc C Compiler, bundled with
MATLAB

lccopts.bat

Microsoft C/C++, Version 5.0 msvc50opts.bat

3 Calling C and Fortran Programs from MATLAB

3-16

Microsoft C/C++, Version 6.0 msvc60opts.bat

Watcom C/C++, Version 11 wat11copts.bat

DIGITAL Visual Fortran,
Version 5.0

df50opts.bat

Compaq Visual Fortran,
Version 6.1

df61opts.bat

Compaq Visual Fortran,
Version 6.6

df66opts.bat

Borland C, Version 5.0 & 5.2, for
Engine and MAT stand-alone
programs

bccengmatopts.bat

Borland C, Version 5.3, for Engine
and MAT stand-alone programs

bcc53engmatopts.bat

Borland C, Version 5.4, for Engine
and MAT stand-alone programs

bcc54engmatopts.bat

Borland C, Version 5.5, for Engine
and MAT stand-alone programs

bcc55engmatopts.bat

Lcc C compiler for Engine and
MAT stand-alone programs,

lccengmatopts.bat

Microsoft Visual C for Engine and
MAT stand-alone programs,
Version 5.0

msvc50engmatopts.bat

Microsoft Visual C for Engine and
MAT stand-alone programs,
Version 6.0

msvc60engmatopts.bat

Watcom C for Engine and MAT
stand-alone programs,
Version 11

wat11engmatopts.bat

Table 3-2: Options Files (Continued)

Platform Compiler Options File

Building MEX-Files

3-17

An up-to-date list of options files is available from our FTP server,
ftp://ftp.mathworks.com/pub/tech-support/docexamples/apiguide/R12/
bin. For a list of all the compilers supported by MATLAB, access the
MathWorks Technical Support Web site at
http://www.mathworks.com/support.

Note The next section, “Custom Building MEX-Files” on page 3-18, contains
specific information on how to modify options files for particular systems.

DIGITAL Visual Fortran for MAT
stand-alone programs,
Version 5.0

df50engmatopts.bat

Compaq Visual Fortran for MAT
stand-alone programs,
Version 6.1

df60engmatopts.bat

UNIX System ANSI Compiler mexopts.sh

GCC gccopts.sh

System ANSI Compiler for
Engine stand-alone programs

engopts.sh

System ANSI Compiler for MAT
stand-alone programs

matopts.sh

Table 3-2: Options Files (Continued)

Platform Compiler Options File

3 Calling C and Fortran Programs from MATLAB

3-18

Custom Building MEX-Files
This section discusses in detail the process that the MEX-file build script uses.
It covers the following topics:

• “Who Should Read this Chapter”

• “MEX Script Switches”

• “Default Options File on UNIX”

• “Default Options File on Windows”

• “Custom Building on UNIX”

• “Custom Building on Windows”

Who Should Read this Chapter
In general, the defaults that come with MATLAB should be sufficient for
building most MEX-files. There are reasons that you might need more detailed
information, such as:

• You want to use an Integrated Development Environment (IDE), rather than
the provided script, to build MEX-files.

• You want to create a new options file, for example, to use a compiler that is
not directly supported.

• You want to exercise more control over the build process than the script uses.

The script, in general, uses two stages (or three, for Microsoft Windows) to
build MEX-files. These are the compile stage and the link stage. In between
these two stages, Windows compilers must perform some additional steps to
prepare for linking (the prelink stage).

MEX Script Switches
The mex script has a set of switches (also called options) that you can use to
modify the link and compile stages. The MEX Script Switches table lists the
available switches and their uses. Each switch is available on both UNIX and
Windows unless otherwise noted.

For customizing the build process, you should modify the options file, which
contains the compiler-specific flags corresponding to the general compile,
prelink, and link steps required on your system. The options file consists of a

Custom Building MEX-Files

3-19

series of variable assignments; each variable represents a different logical
piece of the build process.

Table 3-3: MEX Script Switches

Switch Function

@<rsp_file> Include the contents of the text file <rsp_file> as
command line arguments to the mex script.

-argcheck Perform argument checking on MATLAB API
functions (C functions only).

-c Compile only; do not link.

-D<name>[#<def>] Define C preprocessor macro <name> [as having
value <def>]. (Note: UNIX also allows
-D<name>[=<def>].)

-f <file> Use <file> as the options file; <file> is a full
pathname if it is not in current directory.

-g Build an executable with debugging symbols
included.

-h[elp] Help; lists the switches and their functions.

-I<pathname> Include <pathname> in the compiler include search
path.

-inline Inlines matrix accessor functions (mx*). The
generated MEX-function may not be compatible
with future versions of MATLAB.

-l<file> (UNIX) Link against library lib<file>.

-L<pathname> (UNIX) Include <pathname> in the list of directories
to search for libraries.

3 Calling C and Fortran Programs from MATLAB

3-20

Default Options File on UNIX
The default MEX options file provided with MATLAB is located in
<matlab>/bin. The mex script searches for an options file called mexopts.sh in
the following order:

• The current directory

• The directory returned by the prefdir function

• The directory specified by [matlabroot '/bin']

<name>#<def> Override options file setting for variable <name>.
This option is equivalent to <ENV_VAR>#<val>,
which temporarily sets the environment variable
<ENV_VAR> to <val> for the duration of the call to
mex. <val> can refer to another environment
variable by prepending the name of the variable
with a $, e.g., COMPFLAGS#"$COMPFLAGS -myswitch".

<name>=<def> (UNIX) Override options file setting for variable
<name>.

-O Build an optimized executable.

-outdir <name> Place all output files in directory <name>.

-output <name> Create an executable named <name>. (An
appropriate executable extension is automatically
appended.)

-setup Set up default options file. This switch should be the
only argument passed.

-U<name> Undefine C preprocessor macro <name>.

-v Verbose; print all compiler and linker settings.

-V5 Compile MATLAB 5-compatible MEX-file.

Table 3-3: MEX Script Switches (Continued)

Switch Function

Custom Building MEX-Files

3-21

mex uses the first occurrence of the options file it finds. If no options file is
found, mex displays an error message. You can directly specify the name of the
options file using the -f switch.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file in fullfile(matlabroot, 'bin',
'mexopts.sh'), or you can invoke the mex script in verbose mode (-v). Verbose
mode will print the exact compiler options, prelink commands (if appropriate),
and linker options used in the build process for each compiler. “Custom
Building on UNIX” on page 3-22 gives an overview of the high-level build
process.

Default Options File on Windows
The default MEX options file is placed in your user profile directory after you
configure your system by running mex -setup. The mex script searches for an
options file called mexopts.bat in the following order:

• The current directory

• The user profile directory (returned by the prefdir function)

• The directory specified by [matlabroot '\bin\win32\mexopts']

mex uses the first occurrence of the options file it finds. If no options file is
found, mex searches your machine for a supported C compiler and
automatically configures itself to use that compiler. Also, during the
configuration process, it copies the compiler’s default options file to the user
profile directory. If multiple compilers are found, you are prompted to select
one.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file, mexopts.bat, or you can invoke the
mex script in verbose mode (-v). Verbose mode will print the exact compiler
options, prelink commands, if appropriate, and linker options used in the build
process for each compiler. “Custom Building on Windows” on page 3-24 gives
an overview of the high-level build process.

The User Profile Directory
The Windows user profile directory is a directory that contains user-specific
information such as desktop appearance, recently used files, and Start menu
items. The mex and mbuild utilities store their respective options files,
mexopts.bat and compopts.bat, which are created during the setup process,

3 Calling C and Fortran Programs from MATLAB

3-22

in a subdirectory of your user profile directory, named Application
Data\MathWorks\MATLAB.

Custom Building on UNIX
On UNIX systems, there are two stages in MEX-file building: compiling and
linking.

Compile Stage
The compile stage must:

• Add <matlab>/extern/include to the list of directories in which to find
header files (-I<matlab>/extern/include)

• Define the preprocessor macro MATLAB_MEX_FILE (-DMATLAB_MEX_FILE)

• (C MEX-files only) Compile the source file, which contains version
information for the MEX-file, <matlab>/extern/src/mexversion.c

Link Stage
The link stage must:

• Instruct the linker to build a shared library

• Link all objects from compiled source files (including mexversion.c)

• (Fortran MEX-files only) Link in the precompiled versioning source file,
<matlab>/extern/lib/$Arch/version4.o

• Export the symbols mexFunction and mexVersion (these symbols represent
functions called by MATLAB)

For Fortran MEX-files, the symbols are all lower case and may have appended
underscores. For specific information, invoke the mex script in verbose mode
and examine the output.

Build Options
For customizing the build process, you should modify the options file. The
options file contains the compiler-specific flags corresponding to the general
steps outlined above. The options file consists of a series of variable
assignments; each variable represents a different logical piece of the build
process. The options files provided with MATLAB are located in <matlab>/bin.

Custom Building MEX-Files

3-23

The section, “Default Options File on UNIX” on page 3-20, describes how the
mex script looks for an options file.

To aid in providing flexibility, there are two sets of options in the options file
that can be turned on and off with switches to the mex script. These sets of
options correspond to building in debug mode and building in optimization
mode. They are represented by the variables DEBUGFLAGS and OPTIMFLAGS,
respectively, one pair for each driver that is invoked (CDEBUGFLAGS for the C
compiler, FDEBUGFLAGS for the Fortran compiler, and LDDEBUGFLAGS for the
linker; similarly for the OPTIMFLAGS).

• If you build in optimization mode (the default), the mex script will include the
OPTIMFLAGS options in the compile and link stages.

• If you build in debug mode, the mex script will include the DEBUGFLAGS
options in the compile and link stages, but will not include the OPTIMFLAGS
options.

• You can include both sets of options by specifying both the optimization and
debugging flags to the mex script (-O and -g, respectively).

Aside from these special variables, the mex options file defines the executable
invoked for each of the three modes (C compile, Fortran compile, link) and the
flags for each stage. You can also provide explicit lists of libraries that must be
linked in to all MEX-files containing source files of each language.

The variables can be summed up as follows.

Variable C Compiler Fortran Compiler Linker

Executable CC FC LD

Flags CFLAGS FFLAGS LDFLAGS

Optimization COPTIMFLAGS FOPTIMFLAGS LDOPTIMFLAGS

Debugging CDEBUGFLAGS FDEBUGFLAGS LDDEBUGFLAGS

Additional libraries CLIBS FLIBS (none)

3 Calling C and Fortran Programs from MATLAB

3-24

For specifics on the default settings for these variables, you can:

• Examine the options file in <matlab>/bin/mexopts.sh (or the options file
you are using), or

• Invoke the mex script in verbose mode

Custom Building on Windows
There are three stages to MEX-file building for both C and Fortran on Windows
– compiling, prelinking, and linking.

Compile Stage
For the compile stage, a mex options file must:

• Set up paths to the compiler using the COMPILER (e.g., Watcom), PATH,
INCLUDE, and LIB environment variables. If your compiler always has the
environment variables set (e.g., in AUTOEXEC.BAT), you can remark them out
in the options file.

• Define the name of the compiler, using the COMPILER environment variable,
if needed.

• Define the compiler switches in the COMPFLAGS environment variable.

a The switch to create a DLL is required for MEX-files.

b For stand-alone programs, the switch to create an exe is required.

c The -c switch (compile only; do not link) is recommended.

d The switch to specify 8-byte alignment.

e Any other switch specific to the environment can be used.

• Define preprocessor macro, with -D, MATLAB_MEX_FILE is required.

• Set up optimizer switches and/or debug switches using OPTIMFLAGS and
DEBUGFLAGS. These are mutually exclusive: the OPTIMFLAGS are the default,
and the DEBUGFLAGS are used if you set the -g switch on the mex command
line.

Custom Building MEX-Files

3-25

Prelink Stage
The prelink stage dynamically creates import libraries to import the required
function into the MEX, MAT, or engine file:

• All MEX-files link against MATLAB only.

• MAT stand-alone programs link against libmx.dll (array access library),
libut.dll (utility library), and libmat.dll (MAT-functions).

• Engine stand-alone programs link against libmx.dll (array access library),
libut.dll (utility library), and libeng.dll for engine functions.

MATLAB and each DLL have corresponding .def files of the same names
located in the <matlab>\extern\include directory.

Link Stage
Finally, for the link stage, a mex options file must:

• Define the name of the linker in the LINKER environment variable.

• Define the LINKFLAGS environment variable that must contain:

- The switch to create a DLL for MEX-files, or the switch to create an exe
for stand-alone programs.

- Export of the entry point to the MEX-file as mexFunction for C or
MEXFUNCTION@16 for DIGITAL Visual Fortran.

- The import library (or libraries) created in the PRELINK_CMDS stage.

- Any other link switch specific to the compiler that can be used.

• Define the linking optimization switches and debugging switches in
LINKEROPTIMFLAGS and LINKDEBUGFLAGS. As in the compile stage, these two
are mutually exclusive: the default is optimization, and the -g switch
invokes the debug switches.

• Define the link-file identifier in the LINK_FILE environment variable, if
needed. For example, Watcom uses file to identify that the name following
is a file and not a command.

• Define the link-library identifier in the LINK_LIB environment variable, if
needed. For example, Watcom uses library to identify the name following is
a library and not a command.

• Optionally, set up an output identifier and name with the output switch in
the NAME_OUTPUT environment variable. The environment variable MEX_NAME

3 Calling C and Fortran Programs from MATLAB

3-26

contains the name of the first program in the command line. This must be set
for -output to work. If this environment is not set, the compiler default is to
use the name of the first program in the command line. Even if this is set, it
can be overridden by specifying the mex -output switch.

Linking DLLs to MEX-Files
To link a DLL to a MEX-file, list the DLL’s .lib file on the command line.

Versioning MEX-Files
The mex script can build your MEX-file with a resource file that contains
versioning and other essential information. The resource file is called
mexversion.rc and resides in the extern\include directory. To support
versioning, there are two new commands in the options files, RC_COMPILER and
RC_LINKER, to provide the resource compiler and linker commands. It is
assumed that:

• If a compiler command is given, the compiled resource will be linked into the
MEX-file using the standard link command.

• If a linker command is given, the resource file will be linked to the MEX-file
after it is built using that command.

Compiling MEX-Files with the Microsoft Visual C++ IDE

Note This section provides information on how to compile MEX-files in the
Microsoft Visual C++ (MSVC) IDE; it is not totally inclusive. This section
assumes that you know how to use the IDE. If you need more information on
using the MSVC IDE, refer to the corresponding Microsoft documentation.

To build MEX-files with the Microsoft Visual C++ integrated development
environment:

1 Create a project and insert your MEX source and mexversion.rc into it.

2 Create a .DEF file to export the MEX entry point. For example

LIBRARY MYFILE.DLL
EXPORTS mexFunction <-- for a C MEX-file
 or

Custom Building MEX-Files

3-27

EXPORTS _MEXFUNCTION@16 <-- for a Fortran MEX-file

3 Add the .DEF file to the project.

4 Locate the .LIB files for the compiler version you are using under
matlabroot\extern\lib\win32\microsoft. For example, for version 6.0,
these files are in the msvc60 subdirectory.

5 From this directory, add libmx.lib, libmex.lib, and libmat.lib to the
library modules in the LINK settings option.

6 Add the MATLAB include directory, MATLAB\EXTERN\INCLUDE to the
include path in the Settings C/C++ Preprocessor option.

7 Add MATLAB_MEX_FILE to the C/C++ Preprocessor option by selecting
Settings from the Build menu, selecting C/C++, and then typing
,MATLAB_MEX_FILE after the last entry in the Preprocessor definitions
field.

8 To debug the MEX-file using the IDE, put MATLAB.EXE in the Settings
Debug option as the Executable for debug session.

If you are using a compiler other than the Microsoft Visual C/C++ compiler, the
process for building MEX files is similar to that described above. In step 4,
locate the .LIB files for the compiler you are using in a subdirectory of
matlabroot\extern\lib\win32. For example, for version 5.4 of the Borland
C/C++ compiler, look in matlabroot\extern\lib\win32\borland\bc54.

3 Calling C and Fortran Programs from MATLAB

3-28

Troubleshooting
This section explains how to troubleshoot some of the more common problems
you may encounter. It addresses the following topics:

• “Configuration Issues”

• “Understanding MEX-File Problems”

• “Compiler and Platform-Specific Issues”

• “Memory Management Compatibility Issues”

Configuration Issues
This section focuses on some common problems that might occur when creating
MEX-files.

Search Path Problem on Windows
Under Windows, if you move the MATLAB executable without reinstalling
MATLAB, you may need to modify mex.bat to point to the new MATLAB
location.

MATLAB Pathnames Containing Spaces on Windows
If you have problems building MEX-files on Windows and there is a space in
any of the directory names within the MATLAB path, you need to either
reinstall MATLAB into a pathname that contains no spaces or rename the
directory that contains the space. For example, if you install MATLAB under
the Program Files directory, you may have difficulty building MEX-files with
certain C compilers.

DLLs Not on Path on Windows
MATLAB will fail to load MEX-files if it cannot find all DLLs referenced by the
MEX-file; the DLLs must be on the DOS path or in the same directory as the
MEX-file. This is also true for third-party DLLs.

Troubleshooting

3-29

Internal Error When Using mex -setup (PC).
Some antivirus software packages may conflict with the mex -setup process or
other mex commands. If you get an error message of the following form in
response to a mex command,

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and reenter the
command. After you have successfully run the mex operation, you can
re-enable your antivirus software.

Alternatively, you can open a separate MS-DOS window and enter the mex
command from that window.

General Configuration Problem
Make sure you followed the configuration steps for your platform described in
this chapter. Also, refer to “Custom Building MEX-Files” on page 3-18 for
additional information.

3 Calling C and Fortran Programs from MATLAB

3-30

Understanding MEX-File Problems
This section contains information regarding common problems that occur when
creating MEX-files. Use the figure, below, to help isolate these problems.

Figure 3-1: Troubleshooting MEX-File Creation Problems

Start
Acquire a supported compiler.
See “Supported Compilers”

Can you compile
and run timestwo.c

or timestwo.f?

no Are you using a
supported compiler

?

no Stop

yes

Double check your configuration.

See “Testing Your Configuration

on UNIX (or Windows)”
yes

Can you compile
your program

?

no
Check for:

ANSI C code

General C syntax errors

yes

Can MATLAB
load your MEX-file

?

no

Segmentation fault
or bus error

?

Use:
matlab -check_malloc1

Link against all libraries
you intend to use.

Do you get
the right answer

?

no
Use:

yes

yes

matlab -check_malloc1

Run in debugger.

Stop

Check:
Spelling of mexFunction

no

yes

1 UNIX only

mex -argcheck2

mexPrintf

1

2

3

4 5

2 MEX-files only

for details.

Troubleshooting

3-31

Problems 1 through 5 refer to specific sections of the previous flowchart. For
additional suggestions on resolving MEX build problems, access the
MathWorks Technical Support Web site at
http://www.mathworks.com/support.

Problem 1 - Compiling a MathWorks Program Fails
The most common configuration problem in creating C MEX-files on UNIX
involves using a non-ANSI C compiler, or failing to pass to the compiler a flag
that tells it to compile ANSI C code.

A reliable way of knowing if you have this type of configuration problem is if
the header files supplied by The MathWorks generate a string of syntax errors
when you try to compile your code. See “Building MEX-Files” on page 3-9 for
information on selecting the appropriate options file or, if necessary, obtain an
ANSI C compiler.

Problem 2 - Compiling Your Own Program Fails
A second way of generating a string of syntax errors occurs when you attempt
to mix ANSI and non-ANSI C code. The MathWorks provides header and
source files that are ANSI C compliant. Therefore, your C code must also be
ANSI compliant.

Other common problems that can occur in any C program are neglecting to
include all necessary header files, or neglecting to link against all required
libraries.

Problem 3 - MEX-File Load Errors
If you receive an error of the form

Unable to load mex file:
??? Invalid MEX-file

MATLAB is unable to recognize your MEX-file as being valid.

MATLAB loads MEX-files by looking for the gateway routine, mexFunction. If
you misspell the function name, MATLAB is not able to load your MEX-file and
generates an error message. On Windows, check that you are exporting
mexFunction correctly.

On some platforms, if you fail to link against required libraries, you may get an
error when MATLAB loads your MEX-file rather than when you compile your

3 Calling C and Fortran Programs from MATLAB

3-32

MEX-file. In such cases, you see a system error message referring to unresolved
symbols or unresolved references. Be sure to link against the library that
defines the function in question.

On Windows, MATLAB will fail to load MEX-files if it cannot find all DLLs
referenced by the MEX-file; the DLLs must be on the path or in the same
directory as the MEX-file. This is also true for third party DLLs.

Problem 4 - Segmentation Fault or Bus Error
If your MEX-file causes a segmentation violation or bus error, it means that the
MEX-file has attempted to access protected, read-only, or unallocated memory.
Since this is such a general category of programming errors, such problems are
sometimes difficult to track down.

Segmentation violations do not always occur at the same point as the logical
errors that cause them. If a program writes data to an unintended section of
memory, an error may not occur until the program reads and interprets the
corrupted data. Consequently, a segmentation violation or bus error can occur
after the MEX-file finishes executing.

MATLAB provides three features to help you in troubleshooting problems of
this nature. Listed in order of simplicity, they are:

• Recompile your MEX-file with argument checking (C MEX-files only).
You can add a layer of error checking to your MEX-file by recompiling with
the mex script flag -argcheck. This warns you about invalid arguments to
both MATLAB MEX-file (mex) and matrix access (mx) API functions.

Although your MEX-file will not run as efficiently as it can, this switch
detects such errors as passing null pointers to API functions.

• Run MATLAB with the -check_malloc option (UNIX only). The MATLAB
startup flag, -check_malloc, indicates that MATLAB should maintain
additional memory checking information. When memory is freed, MATLAB
checks to make sure that memory just before and just after this memory
remains unwritten and that the memory has not been previously freed.

If an error occurs, MATLAB reports the size of the allocated memory block.
Using this information, you can track down where in your code this memory
was allocated, and proceed accordingly.

Troubleshooting

3-33

Although using this flag prevents MATLAB from running as efficiently as it
can, it detects such errors as writing past the end of a dimensioned array, or
freeing previously freed memory.

• Run MATLAB within a debugging environment. This process is already
described in the chapters on creating C and Fortran MEX-files, respectively.

Problem 5 - Program Generates Incorrect Results
If your program generates the wrong answer(s), there are several possible
causes. First, there could be an error in the computational logic. Second, the
program could be reading from an uninitialized section of memory. For
example, reading the 11th element of a 10-element vector yields unpredictable
results.

Another possibility for generating a wrong answer could be overwriting valid
data due to memory mishandling. For example, writing to the 15th element of
a 10-element vector might overwrite data in the adjacent variable in memory.
This case can be handled in a similar manner as segmentation violations as
described in Problem 4.

In all of these cases, you can use mexPrintf to examine data values at
intermediate stages, or run MATLAB within a debugger to exploit all the tools
the debugger provides.

Compiler and Platform-Specific Issues
This section refers to situations specific to particular compilers and platforms.

MEX-Files Created in Watcom IDE
If you use the Watcom IDE to create MEX-files and get unresolved references
to API functions when linking against our libraries, check the argument
passing convention. The Watcom IDE uses a default switch that passes
parameters in registers. MATLAB requires that you pass parameters on the
stack.

Memory Management Compatibility Issues
MATLAB now implicitly calls mxDestroyArray, the mxArray destructor, at the
end of a MEX-file’s execution on any mxArrays that are not returned in the
left-hand side list (plhs[]). MATLAB issues a warning when it detects any
misconstructed or improperly destructed mxArrays.

3 Calling C and Fortran Programs from MATLAB

3-34

We highly recommend that you fix code in your MEX-files that produces any of
the warnings discussed in the following sections. For additional information,
see “Memory Management” on page 4-37 in Creating C Language MEX-Files.

Note Currently, the following warnings are enabled by default for backwards
compatibility reasons. In future releases of MATLAB, the warnings will be
disabled by default. The programmer will be responsible for enabling these
warnings during the MEX-file development cycle.

Improperly Destroying an mxArray
You cannot use mxFree to destroy an mxArray.

Warning
Warning: You are attempting to call mxFree on a <class-id> array.
The destructor for mxArrays is mxDestroyArray; please call this
instead. MATLAB will attempt to fix the problem and continue, but
this will result in memory faults in future releases.

Example That Causes Warning

In the following example, mxFree does not destroy the array object. This
operation frees the structure header associated with the array, but MATLAB
will still operate as if the array object needs to be destroyed. Thus MATLAB
will try to destroy the array object, and in the process, attempt to free its
structure header again.

mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);
...

 mxFree(temp); /* INCORRECT */

Solution

Call mxDestroyArray instead.

 mxDestroyArray(temp); /* CORRECT */

Troubleshooting

3-35

Incorrectly Constructing a Cell or Structure mxArray
You cannot call mxSetCell or mxSetField variants with prhs[] as the member
array.

Warning

Warning: You are attempting to use an array from another scope
(most likely an input argument) as a member of a cell array or
structure. You need to make a copy of the array first. MATLAB will
attempt to fix the problem and continue, but this will result in
memory faults in future releases.

Example That Causes Warning

In the following example, when the MEX-file returns, MATLAB will destroy
the entire cell array. Since this includes the members of the cell, this will
implicitly destroy the MEX-file’s input arguments. This can cause several
strange results, generally having to do with the corruption of the caller’s
workspace, if the right-hand side argument used is a temporary array (i.e., a
literal or the result of an expression).

myfunction('hello')
/* myfunction is the name of your MEX-file and your code */
/* contains the following: */

 mxArray *temp = mxCreateCellMatrix(1,1);
...

 mxSetCell(temp, 0, prhs[0]); /* INCORRECT */

Solution

Make a copy of the right-hand side argument with mxDuplicateArray and use
that copy as the argument to mxSetCell (or mxSetField variants); for example

mxSetCell(temp, 0, mxDuplicateArray(prhs[0])); /* CORRECT */

Creating a Temporary mxArray with Improper Data
You cannot call mxDestroyArray on an mxArray whose data was not allocated
by an API routine.

3 Calling C and Fortran Programs from MATLAB

3-36

Warning

Warning: You have attempted to point the data of an array to a
block of memory not allocated through the MATLAB API. MATLAB will
attempt to fix the problem and continue, but this will result in
memory faults in future releases.

Example That Causes Warning

If you call mxSetPr, mxSetPi, mxSetData, or mxSetImagData, specifying memory
that was not allocated by mxCalloc, mxMalloc, or mxRealloc as the intended
data block (second argument), then when the MEX-file returns, MATLAB will
attempt to free the pointer to real data and the pointer to imaginary data (if
any). Thus MATLAB will attempt to free memory, in this example, from the
program stack. This will cause the above warning when MATLAB attempts to
reconcile its consistency checking information.

mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL);
 double data[5] = {1,2,3,4,5};

...
 mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data);
 /* INCORRECT */

Solution

Rather than use mxSetPr to set the data pointer, instead create the mxArray
with the right size and use memcpy to copy the stack data into the buffer
returned by mxGetPr.

 mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);
 double data[5] = {1,2,3,4,5};

...
 memcpy(mxGetPr(temp), data, 5*sizeof(double)); /* CORRECT */

Potential Memory Leaks
Prior to Version 5.2, if you created an mxArray using one of the API creation
routines and then you overwrote the pointer to the data using mxSetPr,
MATLAB would still free the original memory. This is no longer the case.

Troubleshooting

3-37

For example,

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxSetPr(plhs[0], pr); /* INCORRECT */

will now leak 5*5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
pr = mxGetPr(plhs[0]);
... <load data into pr>

or alternatively

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxFree(mxGetPr(plhs[0]));
mxSetPr(plhs[0], pr);

Note that the first solution is more efficient.

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetImagData, mxSetIr, or mxSetJc. You can address this issue as shown
above to avoid such memory leaks.

MEX-Files Should Destroy Their Own Temporary Arrays
In general, we recommend that MEX-files destroy their own temporary arrays
and clean up their own temporary memory. All mxArrays except those returned
in the left-hand side list and those returned by mexGetVariablePtr may be
safely destroyed. This approach is consistent with other MATLAB API
applications (i.e., MAT-file applications, engine applications, and MATLAB
Compiler generated applications, which do not have any automatic cleanup
mechanism.)

3 Calling C and Fortran Programs from MATLAB

3-38

Additional Information
The following sections describe how to find additional information and
assistance in building your applications. It covers the following topics:

• “Files and Directories - UNIX Systems”

• “Files and Directories - Windows Systems”

• “Examples”

• “Technical Support”

Files and Directories - UNIX Systems
This section describes the directory organization and purpose of the files
associated with the MATLAB API on UNIX systems.

The following figure illustrates the directories in which the MATLAB API files
are located. In the illustration, <matlab> symbolizes the top-level directory
where MATLAB is installed on your system.

Additional Information

3-39

<matlab>/bin
The <matlab>/bin directory contains two files that are relevant for the
MATLAB API.

mex UNIX shell script that creates MEX-files from C or
Fortran MEX-file source code.

matlab UNIX shell script that initializes your environment
and then invokes the MATLAB interpreter.

extern

lib

bin

<matlab>

$ARCH

include

src

examples
mex

eng_mat

mx

refbook

3 Calling C and Fortran Programs from MATLAB

3-40

This directory also contains the preconfigured options files that the mex script
uses with particular compilers. This table lists the options files.

<matlab>/extern/lib/$ARCH
The <matlab>/extern/lib/$ARCH directory contains libraries, where $ARCH
specifies a particular UNIX platform. On some UNIX platforms, this directory
contains two versions of this library. Library filenames ending with .a are
static libraries and filenames ending with .so or .sl are shared libraries.

<matlab>/extern/include
The <matlab>/extern/include directory contains the header files for
developing C and C++ applications that interface with MATLAB.

The relevant header files for the MATLAB API are:

engine.h Header file for MATLAB engine programs. Contains
function prototypes for engine routines.

mat.h Header file for programs accessing MAT-files.
Contains function prototypes for mat routines.

matrix.h Header file containing a definition of the mxArray
structure and function prototypes for matrix access
routines.

mex.h Header file for building MEX-files. Contains function
prototypes for mex routines.

Table 3-4: Preconfigured Options Files

Options File Description

engopts.sh Used with the mex script and the system C or Fortran
compiler to compile engine applications

gccopts.sh Used with the mex script and the GNU C (gcc) compiler
to compile MEX-files

matopts.sh Used with the mex script and the system C or Fortran
compiler to compile MAT-file applications

mexopts.sh Used with the mex script and the system ANSI C or
Fortran compiler to compile MEX-files

Additional Information

3-41

<matlab>/extern/src
The <matlab>/extern/src directory contains those C source files that are
necessary to support certain MEX-file features such as argument checking and
versioning.

Files and Directories - Windows Systems
This section describes the directory organization and purpose of the files
associated with the MATLAB API on Microsoft Windows systems.

The following figure illustrates the directories in which the MATLAB API files
are located. In the illustration, <matlab> symbolizes the top-level directory
where MATLAB is installed on your system.

extern

bin

<matlab>

include

src

examples

mex

eng_mat

mx

refbook

win32

mexopts

3 Calling C and Fortran Programs from MATLAB

3-42

<matlab>\bin\win32
The <matlab>\bin\win32 directory contains the mex.bat batch file that builds
C and Fortran files into MEX-files. Also, this directory contains mex.pl, which
is a Perl script used by mex.bat.

<matlab>\bin\win32\mexopts
The <matlab>\bin\win32\mexopts directory contains the preconfigured
options files that the mex script uses with particular compilers. See Table 3-2,
Options Files, on page 3-15 for a complete list of the options files.

<matlab>\extern\include
The <matlab>\extern\include directory contains the header files for
developing C and C++ applications that interface with MATLAB.

The relevant header files for the MATLAB API (MEX-files, engine, and
MAT-files) are:

engine.h Header file for MATLAB engine programs. Contains
function prototypes for engine routines.

mat.h Header file for programs accessing MAT-files.
Contains function prototypes for mat routines.

matrix.h Header file containing a definition of the mxArray
structure and function prototypes for matrix access
routines.

mex.h Header file for building MEX-files. Contains function
prototypes for mex routines.

_*.def Files used by Borland compiler.
*.def Files used by MSVC and Microsoft Fortran compilers.
mexversion.rc Resource file for inserting versioning information into

MEX-files.

<matlab>\extern\src
The <matlab>\extern\src directory contains files that are used for debugging
MEX-files.

Additional Information

3-43

Examples
This book uses many examples to show how to write C and Fortran MEX-files.

Examples from the Text
The refbook subdirectory in the extern/examples directory contains the
MEX-file examples (C and Fortran) that are used in this book, External
Interfaces.

You can find the most recent versions of these examples using the anonymous
FTP server locations

ftp://ftp.mathworks.com/pub/tech-support/docexamples/apiguide/R1
2/refbook

MEX Reference Examples
The mex subdirectory of /extern/examples directory contains MEX-file
examples. It includes the examples described in the online External
Interfaces/API reference pages for MEX interface functions (the functions
beginning with the mex prefix).

You can find the most recent versions of these examples using the anonymous
FTP server location

ftp://ftp.mathworks.com/pub/tech-support/docexamples/apiguide/R1
2/mex

MX Examples
The mx subdirectory of extern/examples contains examples for using the array
access functions. Although you can use these functions in stand-alone
programs, most of these are MEX-file examples. The exception is
mxSetAllocFcns.c, since this function is available only to stand-alone
programs.

You can find the most recent versions of these examples using the anonymous
FTP server location

ftp://ftp.mathworks.com/pub/tech-support/docexamples/apiguide/R1
2/mx

3 Calling C and Fortran Programs from MATLAB

3-44

Engine and MAT Examples
The eng_mat subdirectory in the extern/examples directory contains the
MEX-file examples (C and Fortran) for using the MATLAB engine facility, as
well as examples for reading and writing MATLAB data files (MAT-files).
These examples are all stand-alone programs.

You can find the most recent versions of these examples using the anonymous
FTP server locations

ftp://ftp.mathworks.com/pub/tech-support/docexamples/apiguide/R1
2/eng_mat

Technical Support
The MathWorks provides additional Technical Support through its web site. A
few of the services provided are as follows:

• Solution Search Engine

This knowledge base on our web site includes thousands of solutions and links
to Technical Notes and is updated several times each week.

http://www.mathworks.com/search/

• Technical Notes

Technical notes are written by our Technical Support staff to address
commonly asked questions.

http://www.mathworks.com/support/tech-notes/list_all.shtml

4
Creating C Language
MEX-Files

This chapter describes how to write MEX-files in the C programming language. It discusses the
MEX-file itself, how these C language files interact with MATLAB, how to pass and manipulate
arguments of different data types, how to debug your MEX-file programs, and several other, more
advanced topics.

C MEX-Files (p. 4-2) MEX-file components and required arguments

Examples of C MEX-Files (p. 4-6) Sample MEX-files that show how to handle all data types

Advanced Topics (p. 4-36) Help files, linking multiple files, workspace, managing
memory, using LAPACK and BLAS functions

Debugging C Language MEX-Files
(p. 4-53)

Debugging MEX-file source code from within MATLAB

4 Creating C Language MEX-Files

4-2

C MEX-Files
C MEX-files are built by using the mex script to compile your C source code with
additional calls to API routines.

The Components of a C MEX-File
The source code for a MEX-file consists of two distinct parts:

• A computational routine that contains the code for performing the
computations that you want implemented in the MEX-file. Computations
can be numerical computations as well as inputting and outputting data.

• A gateway routine that interfaces the computational routine with MATLAB
by the entry point mexFunction and its parameters prhs, nrhs, plhs, nlhs,
where prhs is an array of right-hand input arguments, nrhs is the number
of right-hand input arguments, plhs is an array of left-hand output
arguments, and nlhs is the number of left-hand output arguments. The
gateway calls the computational routine as a subroutine.

In the gateway routine, you can access the data in the mxArray structure and
then manipulate this data in your C computational subroutine. For example,
the expression mxGetPr(prhs[0]) returns a pointer of type double * to the real
data in the mxArray pointed to by prhs[0]. You can then use this pointer like
any other pointer of type double * in C. After calling your C computational
routine from the gateway, you can set a pointer of type mxArray to the data it
returns. MATLAB is then able to recognize the output from your computational
routine as the output from the MEX-file.

The following C MEX Cycle figure shows how inputs enter a MEX-file, what
functions the gateway routine performs, and how outputs return to MATLAB.

C MEX-Files

4-3

Figure 4-1: C MEX Cycle

const mxArray *A
A = prhs[0]

MATLAB

A call to
MEX-file func:

[C,D]=func(A,B)

tells MATLAB to
pass variables A and
B to your MEX-file.
C and D are left
unassigned.

mxArray *C
C = plhs[0]

const mxArray *B
B = prhs[1]

mxArray *D
D = plhs[1]

INPUTS

OUTPUTS

func.c

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

In the gateway routine:

• Use the mxCreate functions to create
the MATLAB arrays for your output
arguments. Set plhs[0], [1], … to the
pointers to the newly created
MATLAB arrays.

• Use the mxGet functions to extract
your data from prhs[0], [1], …

• Call your C subroutine passing the
input and output data pointers as
function parameters.

MATLAB

On return from
MEX-file func:

[C,D]=func(A,B)

plhs[0] is assigned
to C and plhs[1] is
assigned to D.

4 Creating C Language MEX-Files

4-4

Required Arguments to a MEX-File
The two components of the MEX-file may be separate or combined. In either
case, the files must contain the #include "mex.h" header so that the entry
point and interface routines are declared properly. The name of the gateway
routine must always be mexFunction and must contain these parameters.

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
/* more C code ... */

The parameters nlhs and nrhs contain the number of left- and right-hand
arguments with which the MEX-file is invoked. In the syntax of the MATLAB
language, functions have the general form

[a,b,c,] = fun(d,e,f,)

where the ellipsis () denotes additional terms of the same format. The a,b,c,
are left-hand arguments and the d,e,f, are right-hand arguments.

The parameters plhs and prhs are vectors that contain pointers to the left- and
right-hand arguments of the MEX-file. Note that both are declared as
containing type mxArray *, which means that the variables pointed at are
MATLAB arrays. prhs is a length nrhs array of pointers to the right-hand side
inputs to the MEX-file, and plhs is a length nlhs array that will contain
pointers to the left-hand side outputs that your function generates.

For example, if you invoke a MEX-file from the MATLAB workspace with the
command

x = fun(y,z);

the MATLAB interpreter calls mexFunction with the arguments.

C MEX-Files

4-5

plhs is a 1-element C array where the single element is a null pointer. prhs is
a 2-element C array where the first element is a pointer to an mxArray named
Y and the second element is a pointer to an mxArray named Z.

The parameter plhs points at nothing because the output x is not created until
the subroutine executes. It is the responsibility of the gateway routine to create
an output array and to set a pointer to that array in plhs[0]. If plhs[0] is left
unassigned, MATLAB prints a warning message stating that no output has
been assigned.

Note It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

nlhs = 1

nrhs = 2

plhs

prhs

•
• Y

• Z

4 Creating C Language MEX-Files

4-6

Examples of C MEX-Files
The following sections include information and examples describing how to
pass and manipulate the different data types when working with MEX-files.
These topics include

• “A First Example — Passing a Scalar”

• “Passing Strings”

• “Passing Two or More Inputs or Outputs”

• “Passing Structures and Cell Arrays”

• “Handling Complex Data”

• “Handling 8-,16-, and 32-Bit Data”

• “Manipulating Multidimensional Numerical Arrays”

• “Handling Sparse Arrays”

• “Calling Functions from C MEX-Files”

The MATLAB API provides a full set of routines that handle the various data
types supported by MATLAB. For each data type there is a specific set of
functions that you can use for data manipulation. The first example discusses
the simple case of doubling a scalar. After that, the examples discuss how to
pass in, manipulate, and pass back various data types, and how to handle
multiple inputs and outputs. Finally, the sections discuss passing and
manipulating various MATLAB data types.

Note You can find the most recent versions of the example programs at the
anonymous FTP server

ftp://ftp.mathworks.com/pub/tech-support/docexamples/apiguide/R12/
refbook

Examples of C MEX-Files

4-7

A First Example — Passing a Scalar
Let’s look at a simple example of C code and its MEX-file equivalent. Here is a
C computational function that takes a scalar and doubles it.

#include <math.h>
void timestwo(double y[], double x[])
{
 y[0] = 2.0*x[0];
 return;
}

Below is the same function written in the MEX-file format.

/*
 * ===
 * timestwo.c - example found in API guide
 *
 * Computational function that takes a scalar and doubles it.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.8 $ */

#include "mex.h"

void timestwo(double y[], double x[])
{
 y[0] = 2.0*x[0];
}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
 const mxArray *prhs[])
{
 double *x, *y;
 int mrows, ncols;

4 Creating C Language MEX-Files

4-8

 /* Check for proper number of arguments. */
 if (nrhs != 1) {
 mexErrMsgTxt("One input required.");
 } else if (nlhs > 1) {
 mexErrMsgTxt("Too many output arguments");
 }

 /* The input must be a noncomplex scalar double.*/
 mrows = mxGetM(prhs[0]);
 ncols = mxGetN(prhs[0]);
 if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) ||
 !(mrows == 1 && ncols == 1)) {
 mexErrMsgTxt("Input must be a noncomplex scalar double.");
 }

 /* Create matrix for the return argument. */
 plhs[0] = mxCreateDoubleMatrix(mrows,ncols, mxREAL);

 /* Assign pointers to each input and output. */
 x = mxGetPr(prhs[0]);
 y = mxGetPr(plhs[0]);

 /* Call the timestwo subroutine. */
 timestwo(y,x);
}

In C, function argument checking is done at compile time. In MATLAB, you can
pass any number or type of arguments to your M-function, which is responsible
for argument checking. This is also true for MEX-files. Your program must
safely handle any number of input or output arguments of any supported type.

To compile and link this example source file at the MATLAB prompt, type

mex timestwo.c

This carries out the necessary steps to create the MEX-file called timestwo
with an extension corresponding to the platform on which you’re running. You
can now call timestwo as if it were an M-function.

Examples of C MEX-Files

4-9

x = 2;
y = timestwo(x)
y =
 4

You can create and compile MEX-files in MATLAB or at your operating
system’s prompt. MATLAB uses mex.m, an M-file version of the mex script, and
your operating system uses mex.bat on Windows and mex.sh on UNIX. In
either case, typing

mex filename

at the prompt produces a compiled version of your MEX-file.

In the above example, scalars are viewed as 1-by-1 matrices. Alternatively, you
can use a special API function called mxGetScalar that returns the values of
scalars instead of pointers to copies of scalar variables. This is the alternative
code (error checking has been omitted for brevity).

/*
 * ===
 * timestwoalt.c - example found in API guide
 *
 * Use mxGetScalar to return the values of scalars instead of
 * pointers to copies of scalar variables.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.5 $ */

#include "mex.h"

void timestwo_alt(double *y, double x)
{
 *y = 2.0*x;
}

4 Creating C Language MEX-Files

4-10

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 double *y;
 double x;

 /* Create a 1-by-1 matrix for the return argument. */
 plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);

 /* Get the scalar value of the input x. */
 /* Note: mxGetScalar returns a value, not a pointer. */
 x = mxGetScalar(prhs[0]);

 /* Assign a pointer to the output. */
 y = mxGetPr(plhs[0]);

 /* Call the timestwo_alt subroutine. */
 timestwo_alt(y,x);
}

This example passes the input scalar x by value into the timestwo_alt
subroutine, but passes the output scalar y by reference.

Passing Strings
Any MATLAB data type can be passed to and from MEX-files. For example,
this C code accepts a string and returns the characters in reverse order.

/*
 * ===
 * revord.c
 * Example for illustrating how to copy the string data from
 * MATLAB to a C-style string and back again.
 *
 * Takes a string and returns a string in reverse order.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ==
 */

Examples of C MEX-Files

4-11

/* $Revision: 1.10 $ */

#include "mex.h"

void revord(char *input_buf, int buflen, char *output_buf)
{
 int i;

 /* Reverse the order of the input string. */
 for (i = 0; i < buflen-1; i++)
 *(output_buf+i) = *(input_buf+buflen-i-2);
}

In this example, the API function mxCalloc replaces calloc, the standard C
function for dynamic memory allocation. mxCalloc allocates dynamic memory
using the MATLAB memory manager and initializes it to zero. You must use
mxCalloc in any situation where C would require the use of calloc. The same
is true for mxMalloc and mxRealloc; use mxMalloc in any situation where C
would require the use of malloc and use mxRealloc where C would require
realloc.

Note MATLAB automatically frees up memory allocated with the mx
allocation routines (mxCalloc, mxMalloc, mxRealloc) upon exiting your
MEX-file. If you don’t want this to happen, use the API function
mexMakeMemoryPersistent.

Below is the gateway routine that calls the C computational routine revord.

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 char *input_buf, *output_buf;
 int buflen,status;

 /* Check for proper number of arguments. */
 if (nrhs != 1)
 mexErrMsgTxt("One input required.");
 else if (nlhs > 1)
 mexErrMsgTxt("Too many output arguments.");

4 Creating C Language MEX-Files

4-12

 /* Input must be a string. */
 if (mxIsChar(prhs[0]) != 1)
 mexErrMsgTxt("Input must be a string.");

 /* Input must be a row vector. */
 if (mxGetM(prhs[0]) != 1)
 mexErrMsgTxt("Input must be a row vector.");

 /* Get the length of the input string. */
 buflen = (mxGetM(prhs[0]) * mxGetN(prhs[0])) + 1;

 /* Allocate memory for input and output strings. */
 input_buf = mxCalloc(buflen, sizeof(char));
 output_buf = mxCalloc(buflen, sizeof(char));

 /* Copy the string data from prhs[0] into a C string
 * input_buf. */
 status = mxGetString(prhs[0], input_buf, buflen);
 if (status != 0)
 mexWarnMsgTxt("Not enough space. String is truncated.");

 /* Call the C subroutine. */
 revord(input_buf, buflen, output_buf);

 /* Set C-style string output_buf to MATLAB mexFunction output*/
 plhs[0] = mxCreateString(output_buf);
 return;
}

The gateway routine allocates memory for the input and output strings. Since
these are C strings, they need to be one greater than the number of elements
in the MATLAB string. Next the MATLAB string is copied to the input string.
Both the input and output strings are passed to the computational subroutine
(revord), which loads the output in reverse order. Note that the output buffer
is a valid null-terminated C string because mxCalloc initializes the memory to
0. The API function mxCreateString then creates a MATLAB string from the
C string, output_buf. Finally, plhs[0], the left-hand side return argument to
MATLAB, is set to the MATLAB array you just created.

Examples of C MEX-Files

4-13

By isolating variables of type mxArray from the computational subroutine, you
can avoid having to make significant changes to your original C code.

In this example, typing

x = 'hello world';
y = revord(x)

produces

The string to convert is 'hello world'.
y =
dlrow olleh

Passing Two or More Inputs or Outputs
The plhs[] and prhs[] parameters are vectors that contain pointers to each
left-hand side (output) variable and each right-hand side (input) variable,
respectively. Accordingly, plhs[0] contains a pointer to the first left-hand side
argument, plhs[1] contains a pointer to the second left-hand side argument,
and so on. Likewise, prhs[0] contains a pointer to the first right-hand side
argument, prhs[1] points to the second, and so on.

This example, xtimesy, multiplies an input scalar by an input scalar or matrix
and outputs a matrix. For example, using xtimesy with two scalars gives

x = 7;
y = 7;
z = xtimesy(x,y)

z =
 49

Using xtimesy with a scalar and a matrix gives

x = 9;
y = ones(3);
z = xtimesy(x,y)

4 Creating C Language MEX-Files

4-14

z =
 9 9 9
 9 9 9
 9 9 9

This is the corresponding MEX-file C code.

/*
 * ===
 * xtimesy.c - example found in API guide
 *
 * Multiplies an input scalar times an input matrix and outputs a
 * matrix.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.10 $ */

#include "mex.h"

void xtimesy(double x, double *y, double *z, int m, int n)
{
 int i,j,count = 0;

 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++) {
 *(z+count) = x * *(y+count);
 count++;
 }
 }
}

Examples of C MEX-Files

4-15

/* The gateway routine */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 double *y, *z;
 double x;
 int status,mrows,ncols;

 /* Check for proper number of arguments. */
 /* NOTE: You do not need an else statement when using
 mexErrMsgTxt within an if statement. It will never
 get to the else statement if mexErrMsgTxt is executed.
 (mexErrMsgTxt breaks you out of the MEX-file.)
 */
 if (nrhs != 2)
 mexErrMsgTxt("Two inputs required.");
 if (nlhs != 1)
 mexErrMsgTxt("One output required.");

 /* Check to make sure the first input argument is a scalar. */
 if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) ||
 mxGetN(prhs[0])*mxGetM(prhs[0]) != 1) {
 mexErrMsgTxt("Input x must be a scalar.");
 }

 /* Get the scalar input x. */
 x = mxGetScalar(prhs[0]);

 /* Create a pointer to the input matrix y. */
 y = mxGetPr(prhs[1]);

 /* Get the dimensions of the matrix input y. */
 mrows = mxGetM(prhs[1]);
 ncols = mxGetN(prhs[1]);

 /* Set the output pointer to the output matrix. */
 plhs[0] = mxCreateDoubleMatrix(mrows,ncols, mxREAL);

 /* Create a C pointer to a copy of the output matrix. */
 z = mxGetPr(plhs[0]);

4 Creating C Language MEX-Files

4-16

 /* Call the C subroutine. */
 xtimesy(x,y,z,mrows,ncols);
}

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. All you need to do is keep track of which
indices of the vectors prhs and plhs correspond to the input and output
arguments of your function. In the example above, the input variable x
corresponds to prhs[0] and the input variable y to prhs[1].

Note that mxGetScalar returns the value of x rather than a pointer to x. This
is just an alternative way of handling scalars. You could treat x as a 1-by-1
matrix and use mxGetPr to return a pointer to x.

Passing Structures and Cell Arrays
Passing structures and cell arrays into MEX-files is just like passing any other
data types, except the data itself is of type mxArray. In practice, this means that
mxGetField (for structures) and mxGetCell (for cell arrays) return pointers of
type mxArray. You can then treat the pointers like any other pointers of type
mxArray, but if you want to pass the data contained in the mxArray to a C
routine, you must use an API function such as mxGetData to access it.

This example takes an m-by-n structure matrix as input and returns a new
1-by-1 structure that contains these fields:

• String input generates an m-by-n cell array

• Numeric input (noncomplex, scalar values) generates an m-by-n vector of
numbers with the same class ID as the input, for example int, double, and
so on.

/*
 * ===
 * phonebook.c
 * Example for illustrating how to manipulate structure and cell
 * array
 *
 * Takes a (MxN) structure matrix and returns a new structure
 * (1x1) containing corresponding fields:for string input, it
 * will be (MxN) cell array; and for numeric (noncomplex, scalar)
 * input, it will be (MxN) vector of numbers with the same

Examples of C MEX-Files

4-17

 * classID as input, such as int, double etc..
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.6 $ */

#include "mex.h"
#include "string.h"

#define MAXCHARS 80 /* max length of string contained in each
 field */

/* The gateway routine. */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 const char **fnames; /* pointers to field names */
 const int *dims;
 mxArray *tmp, *fout;
 char *pdata;
 int ifield, jstruct, *classIDflags;
 int NStructElems, nfields, ndim;

 /* Check proper input and output */
 if (nrhs != 1)
 mexErrMsgTxt("One input required.");
 else if (nlhs > 1)
 mexErrMsgTxt("Too many output arguments.");
 else if (!mxIsStruct(prhs[0]))
 mexErrMsgTxt("Input must be a structure.");

 /* Get input arguments */
 nfields = mxGetNumberOfFields(prhs[0]);
 NStructElems = mxGetNumberOfElements(prhs[0]);

 /* Allocate memory for storing classIDflags */
 classIDflags = mxCalloc(nfields, sizeof(int));

4 Creating C Language MEX-Files

4-18

 /* Check empty field, proper data type, and data type
 consistency; get classID for each field. */
 for (ifield = 0; ifield < nfields; ifield++) {
 for (jstruct = 0; jstruct < NStructElems; jstruct++) {
 tmp = mxGetFieldByNumber(prhs[0], jstruct, ifield);
 if (tmp == NULL) {
 mexPrintf("%s%d\t%s%d\n",
 "FIELD:", ifield+1, "STRUCT INDEX :", jstruct+1);
 mexErrMsgTxt("Above field is empty!");
 }
 if (jstruct == 0) {
 if ((!mxIsChar(tmp) && !mxIsNumeric(tmp)) ||
 mxIsSparse(tmp)) {
 mexPrintf("%s%d\t%s%d\n",
 "FIELD:", ifield+1, "STRUCT INDEX :", jstruct+1);
 mexErrMsgTxt("Above field must have either "
 "string or numeric non-sparse data.");
 }
 classIDflags[ifield] = mxGetClassID(tmp);
 } else {
 if (mxGetClassID(tmp) != classIDflags[ifield]) {
 mexPrintf("%s%d\t%s%d\n",
 "FIELD:", ifield+1, "STRUCT INDEX :", jstruct+1);
 mexErrMsgTxt("Inconsistent data type in above field!");
 }
 else if (!mxIsChar(tmp) && ((mxIsComplex(tmp) ||
 mxGetNumberOfElements(tmp) != 1))) {
 mexPrintf("%s%d\t%s%d\n",
 "FIELD:", ifield+1, "STRUCT INDEX :", jstruct+1);
 mexErrMsgTxt("Numeric data in above field "
 "must be scalar and noncomplex!");
 }
 }
 }
 }

 /* Allocate memory for storing pointers */
 fnames = mxCalloc(nfields, sizeof(*fnames));

Examples of C MEX-Files

4-19

 /* Get field name pointers */
 for (ifield = 0; ifield < nfields; ifield++) {
 fnames[ifield] = mxGetFieldNameByNumber(prhs[0],ifield);
 }

 /* Create a 1x1 struct matrix for output */
 plhs[0] = mxCreateStructMatrix(1, 1, nfields, fnames);
 mxFree(fnames);
 ndim = mxGetNumberOfDimensions(prhs[0]);
 dims = mxGetDimensions(prhs[0]);
 for (ifield = 0; ifield < nfields; ifield++) {
 /* Create cell/numeric array */
 if (classIDflags[ifield] == mxCHAR_CLASS) {
 fout = mxCreateCellArray(ndim, dims);
 } else {
 fout = mxCreateNumericArray(ndim, dims,
 classIDflags[ifield], mxREAL);
 pdata = mxGetData(fout);
 }

 /* Copy data from input structure array */
 for (jstruct = 0; jstruct < NStructElems; jstruct++) {
 tmp = mxGetFieldByNumber(prhs[0],jstruct,ifield);
 if (mxIsChar(tmp)) {
 mxSetCell(fout, jstruct, mxDuplicateArray(tmp));
 } else {
 size_t sizebuf;
 sizebuf = mxGetElementSize(tmp);
 memcpy(pdata, mxGetData(tmp), sizebuf);
 pdata += sizebuf;
 }
 }

 /* Set each field in output structure */
 mxSetFieldByNumber(plhs[0], 0, ifield, fout);
 }
 mxFree(classIDflags);
 return;
}

4 Creating C Language MEX-Files

4-20

To see how this program works, enter this structure.

friends(1).name = 'Jordan Robert';
friends(1).phone = 3386;
friends(2).name = 'Mary Smith';
friends(2).phone = 3912;
friends(3).name = 'Stacy Flora';
friends(3).phone = 3238;
friends(4).name = 'Harry Alpert';
friends(4).phone = 3077;

The results of this input are

phonebook(friends)

ans =
 name: {1x4 cell }
 phone: [3386 3912 3238 3077]

Handling Complex Data
Complex data from MATLAB is separated into real and imaginary parts. The
MATLAB API provides two functions, mxGetPr and mxGetPi, that return
pointers (of type double *) to the real and imaginary parts of your data.

This example takes two complex row vectors and convolves them.

/*
 * ===
 * convec.c
 * Example for illustrating how to pass complex data
 * from MATLAB to C and back again
 *
 * Convolves two complex input vectors.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.8 $ */

Examples of C MEX-Files

4-21

#include "mex.h"

/* Computational subroutine */
void convec(double *xr, double *xi, int nx, double *yr,
 double *yi, int ny, double *zr, double *zi)
{
 int i,j;

 zr[0] = 0.0;
 zi[0] = 0.0;
 /* Perform the convolution of the complex vectors. */
 for (i = 0; i < nx; i++) {
 for (j = 0; j < ny; j++) {
 *(zr+i+j) = *(zr+i+j) + *(xr+i) * *(yr+j) - *(xi+i)
 * *(yi+j);
 *(zi+i+j) = *(zi+i+j) + *(xr+i) * *(yi+j) + *(xi+i)
 * *(yr+j);
 }
 }
}

Below is the gateway routine that calls this complex convolution.

/* The gateway routine. */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 double *xr, *xi, *yr, *yi, *zr, *zi;
 int rows, cols, nx, ny;

 /* Check for the proper number of arguments. */
 if (nrhs != 2)
 mexErrMsgTxt("Two inputs required.");
 if (nlhs > 1)
 mexErrMsgTxt("Too many output arguments.");

 /* Check that both inputs are row vectors. */
 if (mxGetM(prhs[0]) != 1 || mxGetM(prhs[1]) != 1)
 mexErrMsgTxt("Both inputs must be row vectors.");
 rows = 1;

4 Creating C Language MEX-Files

4-22

 /* Check that both inputs are complex. */
 if (!mxIsComplex(prhs[0]) || !mxIsComplex(prhs[1]))
 mexErrMsgTxt("Inputs must be complex.\n");

 /* Get the length of each input vector. */
 nx = mxGetN(prhs[0]);
 ny = mxGetN(prhs[1]);

 /* Get pointers to real and imaginary parts of the inputs. */
 xr = mxGetPr(prhs[0]);
 xi = mxGetPi(prhs[0]);
 yr = mxGetPr(prhs[1]);
 yi = mxGetPi(prhs[1]);

 /* Create a new array and set the output pointer to it. */
 cols = nx + ny - 1;
 plhs[0] = mxCreateDoubleMatrix(rows, cols, mxCOMPLEX);
 zr = mxGetPr(plhs[0]);
 zi = mxGetPi(plhs[0]);

 /* Call the C subroutine. */
 convec(xr, xi, nx, yr, yi, ny, zr, zi);

 return;
}

Entering these numbers at the MATLAB prompt

x = [3.000 - 1.000i, 4.000 + 2.000i, 7.000 - 3.000i];
y = [8.000 - 6.000i, 12.000 + 16.000i, 40.000 - 42.000i];

and invoking the new MEX-file

z = convec(x,y)

results in

z =
 1.0e+02 *

Examples of C MEX-Files

4-23

Columns 1 through 4

0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i 3.7600 - 0.1200i

Column 5

1.5400 - 4.1400i

which agrees with the results that the built-in MATLAB function conv.m
produces.

Handling 8-,16-, and 32-Bit Data
You can create and manipulate signed and unsigned 8-, 16-, and 32-bit data
from within your MEX-files. The MATLAB API provides a set of functions that
support these data types. The API function mxCreateNumericArray constructs
an unpopulated N-dimensional numeric array with a specified data size. Refer
to the entry for mxClassID in the online reference pages for a discussion of how
the MATLAB API represents these data types.

Once you have created an unpopulated MATLAB array of a specified data type,
you can access the data using mxGetData and mxGetImagData. These two
functions return pointers to the real and imaginary data. You can perform
arithmetic on data of 8-, 16- or 32-bit precision in MEX-files and return the
result to MATLAB, which will recognize the correct data class.

This example constructs a 2-by-2 matrix with unsigned 16-bit integers, doubles
each element, and returns both matrices to MATLAB.

/*
 * ===
 * doubleelement.c - Example found in API Guide
 *
 * Constructs a 2-by-2 matrix with unsigned 16-bit integers,
 * doubles each element, and returns the matrix.
 *

4 Creating C Language MEX-Files

4-24

 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.9 $ */

#include <string.h> /* Needed for memcpy() */
#include "mex.h"

#define NDIMS 2
#define TOTAL_ELEMENTS 4

/* The computational subroutine */
void dbl_elem(unsigned short *x)
{
 unsigned short scalar=2;
 int i,j;

 for (i=0; i<2; i++) {
 for (j=0; j<2; j++) {
 *(x+i+j) = scalar * *(x+i+j);
 }
 }
}

/* The gateway routine */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 const int dims[]={2,2};
 unsigned char *start_of_pr;
 unsigned short data[]={1,2,3,4};
 int bytes_to_copy;

 /* Call the computational subroutine. */
 dbl_elem(data);

Examples of C MEX-Files

4-25

 /* Create a 2-by-2 array of unsigned 16-bit integers. */
 plhs[0] = mxCreateNumericArray(NDIMS,dims,mxUINT16_CLASS,
 mxREAL);

 /* Populate the real part of the created array. */
 start_of_pr = (unsigned char *)mxGetData(plhs[0]);
 bytes_to_copy = TOTAL_ELEMENTS * mxGetElementSize(plhs[0]);
 memcpy(start_of_pr, data, bytes_to_copy);
}

At the MATLAB prompt, entering

doubleelement

produces

ans =
 2 6
 8 4

The output of this function is a 2-by-2 matrix populated with unsigned 16-bit
integers.

Manipulating Multidimensional Numerical Arrays
You can manipulate multidimensional numerical arrays by using mxGetData
and mxGetImagData to return pointers to the real and imaginary parts of the
data stored in the original multidimensional array. This example takes an
N-dimensional array of doubles and returns the indices for the nonzero
elements in the array.

/*
 * ===
 * findnz.c
 * Example for illustrating how to handle N-dimensional arrays in
 * a MEX-file. NOTE: MATLAB uses 1-based indexing, C uses 0-based
 * indexing.
 *
 * Takes an N-dimensional array of doubles and returns the indices
 * for the non-zero elements in the array. findnz works
 * differently than the FIND command in MATLAB in that it returns
 * all the indices in one output variable, where the column

4 Creating C Language MEX-Files

4-26

 * element contains the index for that dimension.
 *
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 by The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.5 $ */

#include "mex.h"

/* If you are using a compiler that equates NaN to zero, you must
 * compile this example using the flag -DNAN_EQUALS_ZERO. For
 * example:
 *
 * mex -DNAN_EQUALS_ZERO findnz.c
 *
 * This will correctly define the IsNonZero macro for your
 compiler. */

#if NAN_EQUALS_ZERO
#define IsNonZero(d) ((d) != 0.0 || mxIsNaN(d))
#else
#define IsNonZero(d) ((d) != 0.0)
#endif

void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 /* Declare variables. */
 int elements, j, number_of_dims, cmplx;
 int nnz = 0, count = 0;
 double *pr, *pi, *pind;
 const int *dim_array;

Examples of C MEX-Files

4-27

 /* Check for proper number of input and output arguments. */
 if (nrhs != 1) {
 mexErrMsgTxt("One input argument required.");
 }
 if (nlhs > 1) {
 mexErrMsgTxt("Too many output arguments.");
 }

 /* Check data type of input argument. */
 if (!(mxIsDouble(prhs[0]))) {
 mexErrMsgTxt("Input array must be of type double.");
 }

 /* Get the number of elements in the input argument. */
 elements = mxGetNumberOfElements(prhs[0]);

 /* Get the data. */
 pr = (double *)mxGetPr(prhs[0]);
 pi = (double *)mxGetPi(prhs[0]);
 cmplx = ((pi == NULL) ? 0 : 1);

 /* Count the number of non-zero elements to be able to allocate
 the correct size for output variable. */
 for (j = 0; j < elements; j++) {
 if (IsNonZero(pr[j]) || (cmplx && IsNonZero(pi[j]))) {
 nnz++;
 }
 }

 /* Get the number of dimensions in the input argument.
 Allocate the space for the return argument */
 number_of_dims = mxGetNumberOfDimensions(prhs[0]);
 plhs[0] = mxCreateDoubleMatrix(nnz, number_of_dims, mxREAL);
 pind = mxGetPr(plhs[0]);

 /* Get the number of dimensions in the input argument. */
 dim_array = mxGetDimensions(prhs[0]);

4 Creating C Language MEX-Files

4-28

 /* Fill in the indices to return to MATLAB. This loops through
 * the elements and checks for non-zero values. If it finds a
 * non-zero value, it then calculates the corresponding MATLAB
 * indices and assigns them into the output array. The 1 is added
 * to the calculated index because MATLAB is 1-based and C is
 * 0-based. */
 for (j = 0; j < elements; j++) {
 if (IsNonZero(pr[j]) || (cmplx && IsNonZero(pi[j]))) {
 int temp = j;
 int k;
 for (k = 0; k < number_of_dims; k++) {
 pind[nnz*k+count] = ((temp % (dim_array[k])) + 1);
 temp /= dim_array[k];
 }
 count++;
 }
 }
}

Entering a sample matrix at the MATLAB prompt gives

matrix = [3 0 9 0; 0 8 2 4; 0 9 2 4; 3 0 9 3; 9 9 2 0]
matrix =
 3 0 9 0
 0 8 2 4
 0 9 2 4
 3 0 9 3
 9 9 2 0

This example determines the position of all nonzero elements in the matrix.
Running the MEX-file on this matrix produces

nz = findnz(matrix)
nz =
 1 1
 4 1
 5 1
 2 2
 3 2
 5 2
 1 3

Examples of C MEX-Files

4-29

 2 3
 3 3
 4 3
 5 3
 2 4
 3 4
 4 4

Handling Sparse Arrays
The MATLAB API provides a set of functions that allow you to create and
manipulate sparse arrays from within your MEX-files. These API routines
access and manipulate ir and jc, two of the parameters associated with sparse
arrays. For more information on how MATLAB stores sparse arrays, refer to
the section, “The MATLAB Array” on page 3-4.

This example illustrates how to populate a sparse matrix.

/*
 * ===
 * fulltosparse.c
 * This example demonstrates how to populate a sparse
 * matrix. For the purpose of this example, you must pass in a
 * non-sparse 2-dimensional argument of type double.
 *
 * Comment: You might want to modify this MEX-file so that you can
 * use it to read large sparse data sets into MATLAB.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.5 $ */

#include <math.h> /* Needed for the ceil() prototype. */
#include "mex.h"

/* If you are using a compiler that equates NaN to be zero, you
 * must compile this example using the flag -DNAN_EQUALS_ZERO.
 * For example:

4 Creating C Language MEX-Files

4-30

 *
 * mex -DNAN_EQUALS_ZERO fulltosparse.c
 *
 * This will correctly define the IsNonZero macro for your C
 * compiler.
 */

#if defined(NAN_EQUALS_ZERO)
#define IsNonZero(d) ((d) != 0.0 || mxIsNaN(d))
#else
#define IsNonZero(d) ((d) != 0.0)
#endif

void mexFunction(
 int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[]
)
{
 /* Declare variables. */
 int j,k,m,n,nzmax,*irs,*jcs,cmplx,isfull;
 double *pr,*pi,*si,*sr;
 double percent_sparse;

 /* Check for proper number of input and output arguments. */
 if (nrhs != 1) {
 mexErrMsgTxt("One input argument required.");
 }
 if (nlhs > 1) {
 mexErrMsgTxt("Too many output arguments.");
 }

 /* Check data type of input argument. */
 if (!(mxIsDouble(prhs[0]))) {
 mexErrMsgTxt("Input argument must be of type double.");
 }

 if (mxGetNumberOfDimensions(prhs[0]) != 2) {
 mexErrMsgTxt("Input argument must be two dimensional\n");
 }

Examples of C MEX-Files

4-31

 /* Get the size and pointers to input data. */
 m = mxGetM(prhs[0]);
 n = mxGetN(prhs[0]);
 pr = mxGetPr(prhs[0]);
 pi = mxGetPi(prhs[0]);
 cmplx = (pi == NULL ? 0 : 1);

 /* Allocate space for sparse matrix.
 * NOTE: Assume at most 20% of the data is sparse. Use ceil
 * to cause it to round up.
 */

 percent_sparse = 0.2;
 nzmax = (int)ceil((double)m*(double)n*percent_sparse);

 plhs[0] = mxCreateSparse(m,n,nzmax,cmplx);
 sr = mxGetPr(plhs[0]);
 si = mxGetPi(plhs[0]);
 irs = mxGetIr(plhs[0]);
 jcs = mxGetJc(plhs[0]);

 /* Copy nonzeros. */
 k = 0;
 isfull = 0;
 for (j = 0; (j < n); j++) {
 int i;
 jcs[j] = k;
 for (i = 0; (i < m); i++) {
 if (IsNonZero(pr[i]) || (cmplx && IsNonZero(pi[i]))) {

 /* Check to see if non-zero element will fit in
 * allocated output array. If not, increase
 * percent_sparse by 10%, recalculate nzmax, and augment
 * the sparse array.
 */
 if (k >= nzmax) {
 int oldnzmax = nzmax;
 percent_sparse += 0.1;
 nzmax = (int)ceil((double)m*(double)n*percent_sparse);

4 Creating C Language MEX-Files

4-32

 /* Make sure nzmax increases atleast by 1. */
 if (oldnzmax == nzmax)
 nzmax++;

 mxSetNzmax(plhs[0], nzmax);
 mxSetPr(plhs[0], mxRealloc(sr, nzmax*sizeof(double)));
 if (si != NULL)
 mxSetPi(plhs[0], mxRealloc(si, nzmax*sizeof(double)));
 mxSetIr(plhs[0], mxRealloc(irs, nzmax*sizeof(int)));

 sr = mxGetPr(plhs[0]);
 si = mxGetPi(plhs[0]);
 irs = mxGetIr(plhs[0]);
 }
 sr[k] = pr[i];
 if (cmplx) {
 si[k] = pi[i];
 }
 irs[k] = i;
 k++;
 }
 }
 pr += m;
 pi += m;
 }
 jcs[n] = k;
}

At the MATLAB prompt, entering

full = eye(5)
full =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix.

Examples of C MEX-Files

4-33

spar = fulltosparse(full)
spar =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1
 (5,5) 1

Calling Functions from C MEX-Files
It is possible to call MATLAB functions, operators, M-files, and other MEX-files
from within your C source code by using the API function mexCallMATLAB. This
example creates an mxArray, passes various pointers to a subfunction to
acquire data, and calls mexCallMATLAB to calculate the sine function and plot
the results.

/*
 * ===
 * sincall.c
 *
 * Example for illustrating how to use mexCallMATLAB
 *
 * Creates an mxArray and passes its associated pointers (in
 * this demo, only pointer to its real part, pointer to number of
 * rows, pointer to number of columns) to subfunction fill() to
 * get data filled up, then calls mexCallMATLAB to calculate sin
 * function and plot the result.
 *
 * This is a MEX-file for MATLAB.
 * Copyright (c) 1984-2000 The MathWorks, Inc.
 * ===
 */

/* $Revision: 1.4 $ */

#include "mex.h"
#define MAX 1000

4 Creating C Language MEX-Files

4-34

/* Subroutine for filling up data */
void fill(double *pr, int *pm, int *pn, int max)
{
 int i;

 /* You can fill up to max elements, so (*pr) <= max. */
 *pm = max/2;
 *pn = 1;
 for (i = 0; i < (*pm); i++)
 pr[i] = i * (4*3.14159/max);
}

/* The gateway routine */
void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[])
{
 int m, n, max = MAX;
 mxArray *rhs[1], *lhs[1];

 rhs[0] = mxCreateDoubleMatrix(max, 1, mxREAL);

 /* Pass the pointers and let fill() fill up data. */
 fill(mxGetPr(rhs[0]), &m, &n, MAX);
 mxSetM(rhs[0], m);
 mxSetN(rhs[0], n);

 /* Get the sin wave and plot it. */
 mexCallMATLAB(1, lhs, 1, rhs, "sin");
 mexCallMATLAB(0, NULL, 1, lhs, "plot");

 /* Clean up allocated memory. */
 mxDestroyArray(rhs[0]);
 mxDestroyArray(lhs[0]);

 return;
}

Examples of C MEX-Files

4-35

Running this example

sincall

displays the results

Note It is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. See the example below.

The following example creates an M-file that returns two variables but only
assigns one of them a value.

function [a,b] = foo[c]
a = 2*c;

MATLAB displays the following warning message.

Warning: One or more output arguments not assigned during call to
'foo'.

If you then call foo using mexCallMATLAB, the unassigned output variable will
now be of type mxUNKNOWN_CLASS.

	Calling C and Fortran Programs from MATLAB
	Introducing MEX-Files
	Using MEX-Files
	The Distinction Between mx and mex Prefixes

	MATLAB Data
	The MATLAB Array
	Data Storage
	Data Types in MATLAB
	Sparse Matrices
	Using Data Types

	Building MEX-Files
	Compiler Requirements
	Testing Your Configuration on UNIX
	Testing Your Configuration on Windows
	Specifying an Options File

	Custom Building MEX-Files
	Who Should Read this Chapter
	MEX Script Switches
	Default Options File on UNIX
	Default Options File on Windows
	Custom Building on UNIX
	Custom Building on Windows

	Troubleshooting
	Configuration Issues
	Understanding MEX-File Problems
	Compiler and Platform-Specific Issues
	Memory Management Compatibility Issues

	Additional Information
	Files and Directories - UNIX Systems
	Files and Directories - Windows Systems
	Examples
	Technical Support

	Creating C Language MEX-Files
	C MEX-Files
	The Components of a C MEX-File
	Required Arguments to a MEX-File

	Examples of C MEX-Files
	A First Example — Passing a Scalar
	Passing Strings
	Passing Two or More Inputs or Outputs
	Passing Structures and Cell Arrays
	Handling Complex Data
	Handling 8-,16-, and 32-Bit Data
	Manipulating Multidimensional Numerical Arrays
	Handling Sparse Arrays
	Calling Functions from C MEX-Files

